Plant and Soil

, Volume 388, Issue 1–2, pp 87–97

Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador:

Response of nutrient status to elevated Al concentrations
  • Agnes Rehmus
  • Moritz Bigalke
  • Carlos Valarezo
  • Julio Mora Castillo
  • Wolfgang Wilcke
Regular Article

Abstract

Aims

We determined the reasons why in nutrient solution increasing Al concentrations >300 μM inhibited shoot biomass production of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson while 300 μM Al stimulated root biomass production of Tabebuia chrysantha.

Methods

Nutrient concentrations in plant tissue after a hydroponic growth experiment were determined.

Results

Increasing Al concentrations significantly decreased Mg concentrations in leaves. Phosphorus concentrations in roots of C. odorata and T. chrysantha were significantly highest in the treatment with 300 μM Al and correlated significantly with root biomass.

Conclusions

Shoot biomass production was likely inhibited by reduced Mg uptake, impairing photosynthesis. The stimulation of root growth at low Al concentrations can be possibly attributed to improved P uptake.

Keywords

Aluminum toxicity Tropical forest tree seedlings Nutrient deficiency Growth stimulation by phosphorus 

References

  1. Ali B, Hasan S, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exper Bot 62(2):153–159. doi:10.1016/j.envexpbot.2007.07.014 CrossRefGoogle Scholar
  2. Amberger A (1996) Pflanzenernährung, 4th edn. Ulmer, Stuttgart, 319 pGoogle Scholar
  3. Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycles 22:1–16. doi:10.1029/2007GB003158 Google Scholar
  4. Bruijnzeel L, Veneklaas E (1998) Climatic conditions and tropical, montane forest productivity: The fog has not lifted yet. Ecology 79(1):3–9. doi:10.2307/176859 CrossRefGoogle Scholar
  5. Bruijnzeel LA (2001) Hydrology of tropical montane cloud forests: A reassessment. Water Resour Res 1:1–18Google Scholar
  6. Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 157:42–48. doi:10.1016/j.envpol.2008.07.028 CrossRefPubMedGoogle Scholar
  7. Cronan C, Grigal D (1995) Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J Environ Qual 24(2):209–226CrossRefGoogle Scholar
  8. Cuenca G, Herrera R, Medina E (1990) Aluminium tolerance in trees of a tropical cloud forest. Plant Soil 125(2):169–175. doi:10.1007/BF00010654 CrossRefGoogle Scholar
  9. Dogan I, Ozyigit II, Demir G (2014) Influence of aluminum on mineral nutrient uptake and accumulation in Urtica pilulifera L. J Plant Nutr 37(3):469–481. doi:10.1080/01904167.2013.864306 CrossRefGoogle Scholar
  10. Gaume A, Mächler F, Frossard E (2001) Aluminum resistance in two cultivars of Zea mays L.: Root exudation of organic acids and influence of phosphorus nutrition. Plant Soil 234:73–81. doi:10.1023/A:1010535132296 CrossRefGoogle Scholar
  11. Graham CJ (2001) The influence of nitrogen source and aluminum on growth and elemental composition of nemaguard peach seedlings. J Plant Nutr 24(3):423–439. doi:10.1081/PLN-100104970 CrossRefGoogle Scholar
  12. Hafkenscheid RL (2000) Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. Print Partners Ipskamp, Enschede, The Netherlands, pp 303Google Scholar
  13. Hajiboland R, Bahrami Rad S, Barceló J, Poschenrieder C (2013a) Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J Plant Nutr Soil Sci 176(4):616–625. doi:10.1002/jpln.201200311 CrossRefGoogle Scholar
  14. Hajiboland R, Barceló J, Poschenrieder C, Tolrà R (2013b) Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants. J Inorg Biochem 128:183–187. doi:10.1016/j.jinorgbio.2013.07.007 CrossRefPubMedGoogle Scholar
  15. Hoagland D, Arnon D (1950) The water-culture method for growing plants without soil. University of California, Berkeley, pp 32Google Scholar
  16. Jiang HX, Tang N, Zheng JG, Li Y, Chen LS (2009) Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Physiol Plant 137(3):298–311. doi:10.1111/j.1399-3054.2009.01288.x CrossRefPubMedGoogle Scholar
  17. Keltjens WG (1995) Magnesium uptake by Al-stressed maize plants with special emphasis on cation interactions at root exchange sites. In: Date R, Grundon N, Rayment G, Probert M (eds) Plant-soil interactions at low pH: Principles and management, Developments in Plant and Soil Sciences, Vol 64, Springer Netherlands, pp 307–312, doi:10.1007/978-94-011-0221-642
  18. Kinraide TB (2003) Toxicity factors in acidic forest soils: attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation. Eur J Soil Sci 54(2):323–333. doi:10.1046/j.1365-2389.2003.00538.x CrossRefGoogle Scholar
  19. Laing W, Greer D, Sun O, Beets P, Lowe A, Payn T (2000) Physiological impacts of Mg deficiency in Pinus radiata: Growth and photosynthesis. New Phytol 146(1):47–57. doi:10.1046/j.1469-8137.2000.00616.x CrossRefGoogle Scholar
  20. Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8(3):219–230. doi:10.1016/j.baae.2006.02.004 CrossRefGoogle Scholar
  21. Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141(2):674–684. doi:10.1104/pp.105.076497 CrossRefPubMedCentralPubMedGoogle Scholar
  22. Lilienfein J, Wilcke W, Zimmermann R, Gerstberger P, Araújo GM, Zech W (2001) Nutrient storage in soil and biomass of native Brazilian Cerrado. J Plant Nutr Soil Sci 164(5):487–495. doi:10.1002/1522-2624(200110)164:5<487::AID-JPLN487>3.0.CO;2-I CrossRefGoogle Scholar
  23. Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6):273–278. doi:10.1016/S1360-1385(01)01961-6 CrossRefPubMedGoogle Scholar
  24. Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London, p 649Google Scholar
  25. Mosandl R, Günter S (2008) Sustainable management of tropical mountain forests in Ecuador, vol 2. University of Göttingen, Germany, pp 177–193Google Scholar
  26. Osaki M, Watanabe T, Tadano T (1997) Beneficial effect of aluminum on growth of plants adapted to low pH soils. Soil Sci Plant Nutr 43(3):551–563. doi:10.1080/00380768.1997.10414782 CrossRefGoogle Scholar
  27. Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25. doi:10.1016/j.plantsci.2013.07.012 CrossRefPubMedGoogle Scholar
  28. Poschenrieder C, Tolrá R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11(6):288–295. doi:10.1016/j.tplants.2006.04.007 CrossRefPubMedGoogle Scholar
  29. Core Team R (2013) R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/
  30. Rehmus A, Bigalke M, Valarezo C, Mora Castillo J, Wilcke W (2014) Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador: Response of biomass and plant morphology to elevated Al concentrations. Plant Soil 1–15. doi:10.1007/s11104-014-2110-0
  31. Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121:499–513CrossRefGoogle Scholar
  32. Shanmughavel P, Liqing S, Zheng Z, Min C (2001) Nutrient cycling in a tropical seasonal rain forest of Xishuangbanna, southwest China. Part 1: tree species: nutrient distribution and uptake. Bioresour Technol 80(3):163–170. doi:10.1016/S0960-8524(01)00095-5 CrossRefPubMedGoogle Scholar
  33. Silva S, Pinto G, Dias MC, Correia CM, Moutinho-Pereira J, Pinto-Carnide O, Santos C (2012) Aluminium long-term stress differently affects photosynthesis in rye genotypes. Plant Physiol Biochem 54:105–112. doi:10.1016/j.plaphy.2012.02.004 CrossRefPubMedGoogle Scholar
  34. Sun OJ, Payn TW (1999) Magnesium nutrition and photosynthesis in Pinus radiata: Clonal variation and influence of potassium. Tree Physiol 19(8):535–540. doi:10.1093/treephys/19.8.535 CrossRefPubMedGoogle Scholar
  35. Thornton F, Schaedle M, Raynal D (1987) Effects of aluminum on red spruce seedlings in solution culture. Environ Exper Bot 27(4):489–498. doi:10.1016/0098-8472(87)90030-X CrossRefGoogle Scholar
  36. Watanabe T, Osaki M (2001) Influence of aluminum and phosphorus on growth and xylem sap composition in Melastoma malabathricum L. Plant Soil 237(1):63–70. doi:10.1023/A:1013395814958 CrossRefGoogle Scholar
  37. Wilcke W, Leimer S, Peters T, Emck RR P, Trachte K, Valarezo C, Bendix J (2013) The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Glob Biogeochem Cycle. doi:10.1002/2012GB004471
  38. Zhang XB, Liu P, Yang YS, Xu GD (2007) Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes. Bot Stud 48:435–444Google Scholar
  39. Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H (2005) Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol 138(1):297–303. doi:10.1104/pp.105.059667 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Agnes Rehmus
    • 1
  • Moritz Bigalke
    • 1
  • Carlos Valarezo
    • 2
  • Julio Mora Castillo
    • 3
  • Wolfgang Wilcke
    • 4
  1. 1.Geographic InstituteUniversity of BernBernSwitzerland
  2. 2.Dirección General de InvestigacionesUniversidad Nacional de Loja, Ciudadela Universitaria Guillermo Falconí, sector La ArgeliaLojaEcuador
  3. 3.Institute of SilvicultureTechnische Universität MünchenFreisingGermany
  4. 4.Institute of Geography and GeoecologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations