Plant and Soil

, Volume 387, Issue 1–2, pp 81–101 | Cite as

Tree root architecture: new insights from a comprehensive study on dikes

  • Michel VennetierEmail author
  • Caroline Zanetti
  • Patrice Meriaux
  • Benjamin Mary
Regular Article



This study aimed at disentangling the respective influence of species, environment, root size and root type in tree root architecture.


The root system of 106 adult trees from ten species was carefully extracted from French dikes. Root length and proximal diameter, length and diameter of root segments and branch insertion diameter were measured. Root branching and tapering rates, segment taper, classical (P) and new architectural parameters related to branching patterns were computed.


Two contrasting root types called “running” (R) and “short” (S), were identified from growth and architectural parameters. Compared to S roots, R roots were longer for an equivalent proximal diameter and singled out with lower tapering rate, branching rate and segment taper and with smaller branches. Their main axis lost less in diameter at branching point for branches of the same size. Tree species had little influence on these architectural parameters. The effect of soil material (coarse vs fine) was significant mainly on root size, on branching rate in fine material, and only secondarily on some branching patterns for running roots and on segment taper. The new architectural parameters describe branching patterns more accurately than classical ones.


This study provides an original insight in tree root architectural analysis, proposing a new root typology and innovative parameters for the description and modeling of root architecture.


Tree root architecture Tapering rate Branching patterns Earth dike 



The authors are indebted to Caroline Brunel from IMBE for her help in multivariate analyses, to Frédéric Danjon for his comments and suggestions from early stages of this study, to Peter Z. Fulé from NAU, USA, for his help in revising the manuscript and language editing, and to many colleagues, technicians and students who contributed in data collection during 12 years of difficult field campaigns and in lab work, and particularly to Willy Martin, Roland Estève, Christian Ripert, Olivier Chandioux, Gaylord Doirat, Pierre-Jean Moundy, David Fiorese, Sophie Ferrat, Sebastien Tourrette and Geoffrey Blanc. This study was funded by Irstea, Provence-Alpes-Côte d’Azur region (PHD grant), the French National Research Agency (ANR - ERINOH project), by dike managers (EDF, CNR, AD Isère-Drac-Romanche, DDT Nièvre, SMAVD, Chambery Métropole, Conseil Général de l’Isère) who hired the technical staff and material to cut trees, extract root systems and remediate damages to studied sites and the Labex OT-Med (n° ANR-11-LABX-0061) through a PHD grant. This work is a contribution to the Labex OT-Med funded by the French Government «Investissements d’Avenir» through the A*MIDEX project (n° ANR-11-IDEX-0001-02) and to ECCOREV research Federation.

Supplementary material


  1. Atger C (1991) L’architecture racinaire est-elle influencée par le milieu? L’arbre, biologie et developpement hors série:71–84Google Scholar
  2. Atger C, Edelin C (1994a) Premières données sur l’architecture comparée des systèmes racinaires et caulinaires. Can J Bot 72:963–975CrossRefGoogle Scholar
  3. Atger C, Edelin C (1994b) Sratégie d’occupation du milieu souterrain par les systèmes racinaires des arbres. Ecologie 49:343–356Google Scholar
  4. Barthelemy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barthélémy D, Blaise F, Fourcaud T, Nicolini E (1995) Modélisation et simulation de l’architecture des arbres : bilan et perspectives Revue Forestière Française 47:71–96Google Scholar
  6. Bodner G, Leitner D, Nakhforoosh A, Sobotik M, Moder K, Kaul H-P (2013) A statistical approach to root system classification Frontiers in plant science 4:doi:  10.3389/fpls.2013.00292
  7. Collet C, Lof M, Pages L (2006) Root system development of oak seedlings analysed using an architectural model. Effects of competition with grass. Plant Soil 279:367–383. doi: 10.1007/s11104-005-2419-9 CrossRefGoogle Scholar
  8. Cordoba-Rodriguez D, Vargas-Hernandez JJ, Lopez-Upton J, Munoz-Orozco A (2011) Root growth in young plants of Pinus pinceana Gordon in response to soil moisture. Agrociencia 45:493–506Google Scholar
  9. Core Team R (2010) R: a language and environment for statistical computing vol R foundation for statistical. Computing, ViennaGoogle Scholar
  10. Coutts MP, Lewis GJ (1983) When is the structural root system determined in Sitka spruce? Plant Soil:155–160Google Scholar
  11. Danjon F, Reubens B (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 303:1–34CrossRefGoogle Scholar
  12. Danjon F, Bert D, Godin C, Trichet P (1999a) Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant Soil 217:49–63CrossRefGoogle Scholar
  13. Danjon F, Sinoquet H, Godin C, Colin F, Drexhage M (1999b) Characterisation of structural tree root architecture using 3D digitising and AMAPmod software. Plant Soil 211:241–258CrossRefGoogle Scholar
  14. Danjon D, Fourcaud, Bert (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387–400PubMedCrossRefGoogle Scholar
  15. Danjon F, Caplan JS, Fortin M, Meredieu C (2013a) Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster Frontiers in Plant Science 4 doi: 10.3389/fpls.2013.00402
  16. Danjon F, Khuder H, Stokes A (2013b) Deep Phenotyping of Coarse Root Architecture in R. pseudoacacia Reveals That Tree Root System Plasticity Is Confined within Its Architectural Model PLoS One 8 doi: 10.1371/journal.pone.0083548
  17. Dunbabin V et al (2013) Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant Soil 372:93–124CrossRefGoogle Scholar
  18. Dupuy F, Stokes D (2005) A density-based approach for the modelling of root architecture: application to maritime pine (Pinus pinaster Ait.) root systems. J Theor Biol 236:323–334PubMedCrossRefGoogle Scholar
  19. Eis S (1974) Root system morphology of Western Hemlock, Western Red Cedar, and Douglas-Fir Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere:28–38Google Scholar
  20. Fitter AH (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106:61–77. doi: 10.2307/2433011 CrossRefGoogle Scholar
  21. Fitter AH, Stickland TR (1992) Fractal characterization of root system architecture. Funct Ecol 6:632–635CrossRefGoogle Scholar
  22. Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytol 118:375–382CrossRefGoogle Scholar
  23. Forde BG (2009) Is it good noise? the role of developmental instability in the shaping of a root system. J Exp Bot 60:3989–4002. doi: 10.1093/jxb/erp265 PubMedCrossRefGoogle Scholar
  24. Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68. doi: 10.1023/a:1010329902165 CrossRefGoogle Scholar
  25. Foussadier R (2003) Les systèmes racinaires des arbres de la ripisylve : effets des contraintes physiquues et exemples. In: IDF (ed) Les forêts riveraines des cours d’eau, écologie, fonctions et gestion. Paris, pp 124–133Google Scholar
  26. George E, Seith B, Schaeffer C, Marschner H (1997) Responses of Picea, Pinus and Pseudotsuga roots to heterogeneous nutrient distribution in soil. Tree Physiol 17:39–45PubMedCrossRefGoogle Scholar
  27. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi: 10.1111/j.1469-8137.2004.01015.x CrossRefGoogle Scholar
  28. Hutchings MJ, John EA (2004) The effects of environmental heterogeneity on root growth and root/shoot partitioning. Ann Bot 94:1–8. doi: 10.1093/aob/mch111 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kalliokoski T, Nygren P, Sievanen R (2008) Coarse root architecture of three boreal tree species growing in mixed stands. Silva Fenn 42:189–210CrossRefGoogle Scholar
  30. Kalliokoski T, Sievanen R, Nygren P (2010) Tree roots as self-similar branching structures: axis differentiation and segment tapering in coarse roots of three boreal forest tree species. Trees-Struct Funct 24:219–236. doi: 10.1007/s00468-009-0393-1 CrossRefGoogle Scholar
  31. Köstler J-N, Brueckner E, Bibelriether H (1968) Die wurzeln der waldbäume. Untersuchung zur morphologie der waldbäume in mitteleuropa. Paul Parey, HamburgGoogle Scholar
  32. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  33. Moreno G, Obrador JJ, Cubera E, Dupraz C (2005) Fine root distribution in dehesas of central-western Spain. Plant Soil 277:153–162CrossRefGoogle Scholar
  34. Mou P, Jones R, Tan Z, Bao Z, Chen H (2013) Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous. Plant Soil 364:373–384. doi: 10.1007/s11104-012-1336-y CrossRefGoogle Scholar
  35. Nemenyi PB (1963) Distribution-free multiple comparisons. Princeton University, New JerseyGoogle Scholar
  36. Nicoll BC, Berthier S, Achim A, Gouskou K, Danjon F, van Beek LPH (2006a) The architecture of Picea sitchensis structural root systems on horizontal and sloping terrain. Trees-Struct Funct 20:701–712. doi: 10.1007/s00468-006-0085-z CrossRefGoogle Scholar
  37. Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006b) Anchorage of coniferous trees in relation to species, soil type, and rooting depth Canadian. J For Res-Rev Can Rech For 36:1871–1883. doi: 10.1139/x06-072 CrossRefGoogle Scholar
  38. Poot P, Lambers H (2008) Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. New Phytol 178:371–381. doi: 10.1111/j.1469-8137.2007.02370.x PubMedCrossRefGoogle Scholar
  39. Richardson AD, Zu Dohna H (2003) Predicting root biomass from branching patterns of douglas-fir root systems. Oikos 100:96–104. doi: 10.1034/j.1600-0706.2003.12081.x CrossRefGoogle Scholar
  40. Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328. doi: 10.2307/3100092 CrossRefGoogle Scholar
  41. Shinozaki K, Yoda K, Hozumi K, Kira T (1964a) A quantitative analysis of plant form: the pipe model theory. II further evidence for the theory and its application in forest ecology Japanese. J Ecol 14:133–139Google Scholar
  42. Shinozaki K, Yoda K, Hozumi K, Kira T (1964b) A quantitative analysis of plant form: the pipe model theory. I basic analyses Japanese. J Ecol 14:97–105Google Scholar
  43. Smit AL, Bengough AG (2000) Root characteristics : why and what to measure. In: Smit AL, Bengough AG (eds) Root methods : a hand book, vol 1. Springer, pp 1–20Google Scholar
  44. Smit AL, Bengough AG, Engels C, Noordwijk M, Pellerin S, Geijn SC (2000) Root methods. A handbook. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  45. Soar CJ, Loveys BR (2007) The effect of changing patterns in soil-moisture availability on grapevine root distribution, and viticultural implications for converting full-cover irrigation into a point-source irrigation system. Aust J Grape Wine Res 13:2–13CrossRefGoogle Scholar
  46. Soethe N, Lehmann J, Engels C (2007) Root tapering between branching points should be included in fractal root system analysis. Ecol Model 207:363–366. doi: 10.1016/j.ecolmodel.2007.05.007 CrossRefGoogle Scholar
  47. Sokalska DI, Haman DZ, Szewczuk A, Sobota J, Deren D (2009) Spatial root distribution of mature apple trees under drip irrigation system. Agric Water Manag 96:917–924. doi: 10.1016/j.agwat.2008.12.003 CrossRefGoogle Scholar
  48. Stokes A, Ball J, Fitter AH, Brain P, Coutts MP (1996) An experimental investigation of the resistance of model root systems to uprooting. Ann Bot 78:415–421. doi: 10.1006/anbo.1996.0137 CrossRefGoogle Scholar
  49. Sun HL, Li SC, Xiong WL, Yang ZR, Cui BS, Tao Y (2008) Influence of slope on root system anchorage of Pinus yunnanensis. Ecol Eng 32:60–67. doi: 10.1016/j.ecoleng.2007.09.002 CrossRefGoogle Scholar
  50. Sutton RF, Tinus RW (1983) Root and root system terminology vol 24. Forest science monograph. Society of American Foresters, BethesdaGoogle Scholar
  51. Tamasi E, Stokes A, Lasserre B, Danjon F, Berthier S, Fourcaud T, Chiatante D (2005) Influence of wind loading on root system development and architecture in oak (Quercus robur L.) seedlings Trees-Struct Funct 19:374–384 doi: 10.1007/s00468-004-0396-x
  52. Tomlinson KW et al (2012) Biomass partitioning and root morphology of savanna trees across a water gradient. J Ecol 100:1113–1121. doi: 10.1111/j.1365-2745.2012.01975.x CrossRefGoogle Scholar
  53. Valdes-Rodriguez OA, Sanchez-Sanchez O, Perez-Vazquez A, Caplan JS, Danjon F (2013) Jatropha curcas L. Root structure and growth in diverse soils. Sci World J. doi: 10.1155/2013/827295 Google Scholar
  54. Van Noordwijk M, Spek LY, Dewilligen P (1994) Proximal root diameter as predictor of total root size for fractal branching models. 1. Theory Plant Soil 164:107–117Google Scholar
  55. Vercambre G, Pages L, Doussan C, Habib R (2003) Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach. Plant Soil 251:1–11CrossRefGoogle Scholar
  56. Wagner B, Gärtner H, Santini S, Ingensand H (2011) Cross-sectional interpolation of annual rings within a 3D root model. Dendrochronologia 29:201–210CrossRefGoogle Scholar
  57. Wahid PA (2000) A system of classification of woody perennials based on their root activity patterns. Agrofor Syst 49:123–130CrossRefGoogle Scholar
  58. Wilson BF (1975) Distribution of secondary thickening in tree root systems. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic, London, pp 197–219Google Scholar
  59. Zanetti C, Vennetier M, Mériaux P, Royet P, Dufour S, Provansal M (2008) L’enracinement des arbres dans les digues en remblai : étude des systèmes racinaires et impacts sur la sécurité des ouvrages Ingénieries - E A T:49–67Google Scholar
  60. Zanetti C, Vennetier M, Mériaux P, Royet P, Provansal M, Blanc G (2011) Managing woody vegetation on earth dikes: risks assessment and maintenance solutions Procedia Environmental Sciences 9:196–200Google Scholar
  61. Zanetti C, Vennetier M, Mériaux P, Provensal M (2014) Plasticity of tree root system structure in contrasting soil materials and environmental conditions Plant Soil. doi: 10.1007/s11104-014-2253-z
  62. Zhang Y, Zhou Z, Yang Q (2013) Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant Soil 364:93–104. doi: 10.1007/s11104-012-1352-y CrossRefGoogle Scholar
  63. Zobel RW, Waisel Y (2010) A plant root system architectural taxonomy: a framework for root nomenclature. Plant Biosyst 144:507–512. doi: 10.1080/11263501003764483 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michel Vennetier
    • 1
    • 2
    Email author
  • Caroline Zanetti
    • 3
    • 4
  • Patrice Meriaux
    • 4
  • Benjamin Mary
    • 4
    • 5
  1. 1.IrsteaUR Ecosystèmes Méditerranéens et RisquesAix-en-Provence Cedex 5France
  2. 2.ECCOREV FR 3098Université Aix-MarseilleMarseilleFrance
  3. 3.ARBEAUSOLutionsMeyreuilFrance
  4. 4.IrsteaUR Ouvrages Hydrauliques et HydrologieAix-en-Provence Cedex 5France
  5. 5.LABEX OT-MedEuropôle Méditerranéen de l’ArboisAix-en-Provence Cedex 4France

Personalised recommendations