Plant and Soil

, Volume 386, Issue 1–2, pp 303–316

Aspects of soil lichen biodiversity and aggregation interact to influence subsurface microbial function

  • Andrea P. Castillo-Monroy
  • Matthew A. Bowker
  • Pablo García-Palacios
  • Fernando T. Maestre
Regular Article

Abstract

Background and aims

Many previous studies have evaluated aboveground–heterotrophic belowground interactions such as plant-soil feedbacks, plant-mycorrhizal fungi associations or plant-actinorhizal symbioses. However, few studies have used biocrusts, which are specialized soil communities of autotrophic cyanobacteria, mosses, lichens and non-photosynthetic fungi and bacteria that are prevalent in drylands worldwide. These communities largely influence ecosystem functioning, and can be used as a model system for studying above-belowground interactions. In this study, we evaluated how biocrusts affect the functional diversity and biomass of microbial diversities beneath biocrusts.

Methods

We performed two microcosm experiments using biocrust-forming lichens where we manipulated their biotic attributes to test independently the effects of species richness (from two to eight species), composition, evenness (maximal and low evenness) and spatial pattern (clumped and random distribution) on the microbial catabolic profile and microbial functional diversity.

Results

Microcosms with a random pattern had a higher microbial catabolic profile than those with a clumped pattern. Significant richness × evenness × pattern and richness × evenness interactions were found when analyzing microbial catabolic profile and biomass, respectively. Microcosms with a random pattern, intermediate number of species, and maximal evenness level had higher microbial catabolic profile. At the maximal evenness level, assemblages had higher microbial catabolic profile and microbial biomass when they contained four species. The richness × evenness × pattern interaction was the most informative predictor of variations in microbial catabolic profile.

Conclusions

Our results indicate that soil microorganisms are influenced by biocrusts, just as they are influenced by plants, and highlight the importance of higher order interactions among species richness, evenness, and spatial pattern as drivers of microbial communities. The results also emphasize the importance of studying several biotic attributes simultaneously when studying biocrust-soil microorganism interactions, as in nature, community properties do not exert their influence in isolation.

Keywords

Richness Evenness Spatial pattern Microbial biomass Basal respiration Microbial communities and biological soil crusts 

Supplementary material

11104_2014_2256_MOESM1_ESM.doc (574 kb)
ESM 1(DOC 574 kb)

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46Google Scholar
  2. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthUKGoogle Scholar
  3. Antarikanonda P (1984) Production of extracellular free amino acids by cyanobacterium Anabaena siamensis. Curr Microbiol 11:191–195CrossRefGoogle Scholar
  4. Antoninka A, Wolf JE, Bowker MA, Classen AT, Johnson NC (2009) Linking above- and belowground responses to global change at community and ecosystem scales. Global Change Biol 15:914–929CrossRefGoogle Scholar
  5. Bardgett R, Wardle D (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, OxfordGoogle Scholar
  6. Bates ST, Nash TH, Sweat KG, Garcia-pichel F (2010) Fungal communities of lichen-dominated biological soil crusts: Diversity, relative microbial biomass, and their relationship to disturbance and crust cover. J Arid Environ 74:1192–1199CrossRefGoogle Scholar
  7. Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135CrossRefGoogle Scholar
  8. Belnap J, Lange OL (2003) Biological soil crusts: structure function and management. Springer, BerlinCrossRefGoogle Scholar
  9. Ben Sassi M, Dollinger J, Renault P, Tlili A, Bérard A (2012) The FungiResp method: an application of the MicroResp method to assess fungi in microbial communities as soil biological indicators. Ecol Indic 23:482–490CrossRefGoogle Scholar
  10. Bever JD (2002) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473CrossRefGoogle Scholar
  11. Billings SA, Schaeffer SM, Evans RD (2003) Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon. Soil Biol Biochem 35:643–649CrossRefGoogle Scholar
  12. Bowker MA, Maestre FT, Escolar C (2010) Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biol Biochem 42:405–417CrossRefGoogle Scholar
  13. Bowker MA, Maestre FT, Mau R (2013) Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality. Ecosystems 16:923–933CrossRefGoogle Scholar
  14. Bowker MA, Maestre FT, Eldridge D, Belnap J, Castillo-Monroy A, Escolar C, Soliveres S (2014) Biological soil crusts as a model system in community, landscape and ecosystem ecology. Biodivers Conserv. doi:10.1007/s10531-014-0658-x Google Scholar
  15. Bowker MA, Mau RL, Maestre FT, Escolar C, Castillo-Monroy AP (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25:787–795CrossRefGoogle Scholar
  16. Blum U (2011) Plant-plat allelopathic interactions: phenolic acids, cover crops and weed emergence. Springer science, NYCrossRefGoogle Scholar
  17. Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599PubMedCentralPubMedCrossRefGoogle Scholar
  18. Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, González A (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592PubMedCrossRefGoogle Scholar
  19. Castillo-Monroy AP, Maestre FT (2014) Data from “Aspects of soil lichen biodiversity and aggregation interact to influence subsurface microbial function”. figshare. doi:10.6084/m9.figshare.1157787
  20. Castillo-Monroy AP, Maestre FT, Delgado-Baquerizo M, Gallardo A (2010) Biological soil crust modulate nitrogen availability in semi-arid ecosystem: insights froma Mediterranean grassland. Plant Soil 333:21–34CrossRefGoogle Scholar
  21. Castillo-Monroy AP, Maestre FT, Rey A, Soliveres S, García-Palacios P (2011a) Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem. Ecosystems 14:835–847CrossRefGoogle Scholar
  22. Castillo-Monroy AP, Bowker MA, Maestre FT, Rodríguez-Echeverría S, Martínez I, Barraza-Zepeda CE, Escolar C (2011b) The relative importance of biological soil crust and soil bacterial diversity and abundance as drivers of ecosystem functioning in a semi-arid environment. J Veg Sci 22:165–174CrossRefGoogle Scholar
  23. Chaudhary VB, Bowker MA, O’Dell TE, Grace JB, Redman AE, Rillig MC, Johnson NC (2009) Untangling the biological contributions to soil stability in semiarid shrublands. Ecol Appl 19:110–122PubMedCrossRefGoogle Scholar
  24. Donoso DA, Johnston MK, Clay N, Kaspari ME (2013) Trees and seasonality as templates for trophic structure of tropical litter arthropod communities. Soil Biol Biochem 61:45–61CrossRefGoogle Scholar
  25. Downing AL (2005) Relative effects of species composition and richness on ecosystem properties in ponds. Ecology 86:701–715CrossRefGoogle Scholar
  26. De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633PubMedCrossRefGoogle Scholar
  27. Doncaster CP, Davey AJH (2007) Analysis of variance and covariance. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Eldridge DJ, Bowker MA, Maestre FT, Alonso P, Mau RL, Papadopolous J, Escudero A (2010) Interactive effects of three ecosystem engineers on infiltration in a semi-arid grassland. Ecosystems 13:499–510CrossRefGoogle Scholar
  29. García-Palacios P, Bowker MA, Maestre FT, Soliveres S, Valladares F, Papadopoulos J, Escudero A (2011) Ecosystem development in roadside grasslands: biotic control, plant–soil interactions, and dispersal limitations. Ecol Appl 21:2806–2821PubMedCrossRefGoogle Scholar
  30. Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32:1239–1252CrossRefGoogle Scholar
  31. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085CrossRefGoogle Scholar
  33. Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau Studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357PubMedCrossRefGoogle Scholar
  34. Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, BerlinCrossRefGoogle Scholar
  35. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton HD, Lodge M, Loreau M, Naeem V, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  36. Johnson D, Ijdo M, Genney DR, Anderson IC, Alexander IJ (2005) How do plants regulate the function, community structure, and diversity of mycorrhizal fungi? J Exp Bot 56:1751–1760PubMedCrossRefGoogle Scholar
  37. Johnson SL, Kuske CL, Carney TD, Housman DC, Gallegos-Graves L, Belnap J (2012) Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem. Global Change Biol 18:2583–2593CrossRefGoogle Scholar
  38. Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant–soil feedback controls succession. Ecol Lett 9:1080–1088PubMedCrossRefGoogle Scholar
  39. Kefeli VI, Kalevitch MV, Borsari B (2013) Phenolic cycle in plants and environment. J Cell Mol Biol 2:13–18Google Scholar
  40. Lange OL, Kidron G, Büdel B, Meyer A, Kilian E, Abeliovich A (1992) Taxonomic composition and photosynthetic characteristics of the “biological soil crusts” covering sand dunes in the western Negev Desert. Funct Ecol 6:519–527CrossRefGoogle Scholar
  41. Lawrey JD (1995) The chemical ecology of lichen mycoparasites: a review. Can J Bot 73:603–608CrossRefGoogle Scholar
  42. Loreau M, Naeem S, Inchausti O, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli V, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefGoogle Scholar
  43. McHugh TA, Gehring CA (2006) Below-ground interactions with arbuscular mycorrhizal shrubs decrease the performance of pinyon pine and the abundance of its ectomycorrhizas. New Phytol 171:171–178PubMedCrossRefGoogle Scholar
  44. Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012a) Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J Ecol 100:317–330CrossRefGoogle Scholar
  45. Maestre FT, Martín N, Díez B, López-Poma R, Santos F, Luque I, Cortina J (2006) Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils. Microb Ecol 52:365–377PubMedCrossRefGoogle Scholar
  46. Maestre FT, Salguero-Gómez R, Quero JL (2012b) It’s getting hotter in here: determining and projecting the impacts of global change on drylands. Philos Trans R Soc B 367:3062–3075CrossRefGoogle Scholar
  47. Maestre FT, Escolar C, Martínez I, Escudero A (2008) Are soil lichen communities structured by biotic interactions? A null model analysis. J Veg Sci 19:261–266CrossRefGoogle Scholar
  48. Maestre FT, Escudero A, Martinez I, Guerrero C, Rubio A (2005) Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts. Funct Ecol 19:566–573CrossRefGoogle Scholar
  49. Nash TH (1996) Lichen biology. Cambridge University Press, CambridgeGoogle Scholar
  50. Neher DA, Lewins SA, Weicht TR, Darby BJ (2009) Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. J Arid Environ 73:672–677CrossRefGoogle Scholar
  51. Oren A, Steinberger Y (2008a) Catabolic profiles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biol Biochem 40:2578–2587CrossRefGoogle Scholar
  52. Oren A, Steinberger Y (2008b) Coping with artifacts induced by CaCO3–CO2–H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol Biochem 40:2569–2577CrossRefGoogle Scholar
  53. Øvreås L (2000) Population and community level approaches for analyzing microbial diversity in natural environments a review. Ecol Lett 3:236–251CrossRefGoogle Scholar
  54. Petersen U, Wrage N, Köhle L, Leuschner C, Isselstein J (2012) Manipulating the species composition of permanent grasslands - A new approach to biodiversity experiments. Basic Appl Ecol 13:1–9CrossRefGoogle Scholar
  55. Pringle RM, Doak DF, Brody AK, Jocqué R, Palmer TM (2010) Spatial pattern enhances ecosystem functioning in an African savanna. PLoS Biol 8:e1000377Google Scholar
  56. Setälä H, Berg MP, Jones TH (2005) Trophic structure and functional redundancy in soil communities. In: Bardgett RD, Usher MB, Hopkind DW (eds) Biological diversity and function in soil. Cambridge University Press, Cambridge, pp 236–249CrossRefGoogle Scholar
  57. Schwintzer CR, Tjepkema JD (2001) Effect of elevated carbon dioxide in the root atmosphere on nitrogenase activity in three actinorhizal plants. Can J Bot 79:1010–1018Google Scholar
  58. Shipley B (2000) Cause and correlation in Biology. Cambridge University Press, UKCrossRefGoogle Scholar
  59. Steven B, Gallegos-Graves L, Belnap J, Kuske C (2013) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113PubMedCrossRefGoogle Scholar
  60. Stevenson FJ (1993) Hummus chemistry: genesis, composition reactions. Wiley, New YorkGoogle Scholar
  61. Tjepkema JD, Schwintzer CR, Burris RH, Johnson GV, Silvester WB (2000) Natural abundance of 15N in actinorhizal plants and nodules. Plant Soil 219:285–289CrossRefGoogle Scholar
  62. Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant diodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  63. Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:l727–l736CrossRefGoogle Scholar
  64. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633PubMedCrossRefGoogle Scholar
  65. Wilsey BJ, Polley HW (2004) Realistically low species evenness does not alter grassland species-richness-productivity relationship. Ecology 85:2693–2700CrossRefGoogle Scholar
  66. Wright RT (1984) Dynamic pools of dissolved organic carbon. In: Hobbie JE, Williams PJ (Eds) Heterotrophic activity in the sea. pp. 121–154. PlenumGoogle Scholar
  67. Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Environ Microbiol 70:973–983PubMedCentralPubMedCrossRefGoogle Scholar
  68. Yu J, Kidron GJ, Pen-Mouratov S, Wasserstrom H, Barness G (2012) Do development stages of biological soil crusts determine activity and functional diversity in a sand-dune ecosystem? Soil Biol Biochem 51:66–72CrossRefGoogle Scholar
  69. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrea P. Castillo-Monroy
    • 1
    • 2
  • Matthew A. Bowker
    • 3
  • Pablo García-Palacios
    • 4
  • Fernando T. Maestre
    • 1
  1. 1.Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstolesSpain
  2. 2.Departamento de Ciencias NaturalesUniversidad Técnica Particular de LojaLojaEcuador
  3. 3.School of ForestryNorthern Arizona UniversityFlagstaffUSA
  4. 4.Centre d’Ecologie Fonctionnelle & Evolutive, CEFE-CNRSMontpellierFrance

Personalised recommendations