Plant and Soil

, Volume 386, Issue 1–2, pp 125–149 | Cite as

A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems

  • David Kraus
  • Sebastian Weller
  • Steffen Klatt
  • Edwin Haas
  • Reiner Wassmann
  • Ralf Kiese
  • Klaus Butterbach-BahlEmail author
Regular Article


Background and aims

Replacing paddy rice by upland systems such as maize cultivation is an on-going trend in SE Asia caused by increasing water scarcity and higher demand for meat. How such land management changes will feedback on soil C and N cycles and soil greenhouse gas emissions is not well understood at present.


A new LandscapeDNDC biogeochemical module was developed that allows the effect of land management changes on soil C and N cycle to be simulated. The new module is applied in combination with further modules simulating microclimate and crop growth and evaluated against observations from field experiments.


The model simulations agree well with observed dynamics of CH 4 emissions in paddy rice depending on changes in climatic conditions and agricultural management. Magnitude and peak emission periods of N 2 O from maize cultivation are simulated correctly, though there are still deficits in reproducing day-to-day dynamics. These shortcomings are most likely related to simulated soil hydrology and may only be resolved if LandscapeDNDC is coupled to more complex hydrological models.


LandscapeDNDC allows for simulation of changing land management practices in SE Asia. The possibility to couple LandscapeDNDC to more complex hydrological models is a feature needed to better understand related effects on soil-atmosphere-hydrosphere interactions.


Methane Nitrous oxide Paddy rice Maize Model 



We thank the German Research Foundation (DFG) for its generous funding (FOR 1701, “Introducing Non-Flooded Crops in Rice-Dominated Landscapes: Impacts on Carbon, Nitrogen and Water Cycles (ICON)”, BU1173/13-1 and KI1413).

Furthermore, funding was provided via the knowledge hub of the Joint Research Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI) within the project “Modelling European Agriculture with Climate Change for Food Security” (MACSUR) and the ÉCLAIRE project (Effects of Climate Change on Air Pollution and Response Strategies for European Ecosystems) funded by the EU’s Seventh Framework Programme for Research and Technological Development (FP7).

KBB and RW received additional financial support via the Climate Change, Agricultural and Food Security Programme (CCAFS) of CGIAR Institutes.


  1. Alberto MCR, Quilty JR, Buresh RJ, et al. (2014) Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation. Agric. Water Manage. 136:1–12. doi: 10.1016/j.agwat.2014.01.005
  2. Anastasi C, Dowding M, Simpson VJ (1992) Future CH4 emissions from rice production. J Geophys Res 97:7521–7525. doi: 10.1029/92JD00157 CrossRefGoogle Scholar
  3. Arah J, Stephen K (1998) A model of the processes leading to methane emission from peatland. Atmos Environ 32:3257–3264CrossRefGoogle Scholar
  4. Aulakh MS, Bodenbender J, Wassmann R (2000) Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutr Cycling Agroecosyst 58:367–375CrossRefGoogle Scholar
  5. Aulakh MS, Wassmann R, Rennenberg H (2002) Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries. Agric Ecosyst Environ 91:59–71CrossRefGoogle Scholar
  6. Bachelet D, Neue HU (1993) Methane emissions from wetland rice areas of Asia. Chemosphere 26:219–237. doi: 10.1016/0045-6535(93)90423-3 CrossRefGoogle Scholar
  7. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research. Nijhoff, Dordrecht, pp 221–224CrossRefGoogle Scholar
  8. Blagodatsky S, Richter O (1998) Microbial growth in soil and nitrogen turnover: a theoretical model considering the activity state of microorganisms. Soil Biol Biochem 30:1743–1755CrossRefGoogle Scholar
  9. Blagodatsky S, Grote R, Kiese R, Werner C, Butterbach-Bahl K (2011) Modelling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission. Plant and Soil 346:297–330–330. doi:  10.1007/s11104-011-0821-z
  10. Borken W, Matzner E (2008) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 14:1–17Google Scholar
  11. Bouman BAM, Tuong TP (2001) Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag 49:11–30CrossRefGoogle Scholar
  12. Bouman BAM, Humphreys E, Tuong TP, Barker R (2007) Rice and water. Adv Agron 92:187–237CrossRefGoogle Scholar
  13. Braker G, Conrad R (2011) Diversity, structure and size of N2O-producing microbial communities - what matters for their functioning? Adv Appl Microbiol 75:33–70PubMedCrossRefGoogle Scholar
  14. Bronson KF, Cassman KG, Wassmann R, Olk DC, van Noordwijk M, Garrity DP (2006) Soil carbon dynamics in different cropping systems in principal ecoregions of Asia. In: LaI R, Kimble J, Follett RF, Stewar BA (eds) In management of carbon sequestration in soil. CRC Press, Boca Raton, pp 35–57Google Scholar
  15. Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183CrossRefGoogle Scholar
  16. Butterbach-Bahl K, Papen H, Rennenberg H (2000) Scanning electron microscopy analysis of the aerenchyma in two rice cultivars. Phyton 40:43–55Google Scholar
  17. Butterbach-Bahl K, Stange F, Papen H, Li C (2001) Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET–N–DNDC. J Geophys Res 106:34155–34166CrossRefGoogle Scholar
  18. Butterbach-Bahl K, Kesik M, Miehle P, Papen H, Li C (2004a) Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant Soil 260:311–329. doi: 10.1023/B:PLSO.0000030186.81212.fb CrossRefGoogle Scholar
  19. Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagiar S, Papen H, Kiese R (2004b) Temporal variations of fluxes of NO, NO2, N2O, CO2 and CH4 in a tropical rain forest ecosystem. Global Biogeochemical Cycles 18, doi: 10.1029/2004GB002243
  20. Butterbach-Bahl K, Kahl M, Mykhayliv L, Werner C, Kiese R, Li C (2009) A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC. Atmos Environ 43:1392–1402CrossRefGoogle Scholar
  21. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci 368:20130122–20130122. doi: 10.1098/rstb.2013.0122 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Cao M, Dent JB, Heal OW (1995) Modeling methane emissions from rice paddies. Glob Biogeochem Cycles 9(2):183–195. doi: 10.1029/94GB03231 CrossRefGoogle Scholar
  23. Cheng K, Ogle SM, Parton WJ, Pan G (2013) Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model. Ecol Model 261–261:19–31. doi: 10.1016/j.ecolmodel.2013.04.003 CrossRefGoogle Scholar
  24. Chirinda N, Kracher D, Lægdsmand M, Porter JR, Olesen JE, Petersen BM, Doltra J, Kiese R, Butterbach-Bahl K (2011) Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant Soil 343:139–160CrossRefGoogle Scholar
  25. Cicerone RJ, Delwiche CC, Tyler SC, Zimmerman PR (2012) Methane emissions from California rice paddies with varied treatments. Glob Biogeochem Cycles 6(3):233–248. doi: 10.1029/92GB01412 CrossRefGoogle Scholar
  26. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640PubMedCentralPubMedGoogle Scholar
  27. Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202CrossRefGoogle Scholar
  28. Corbeels M, McMurtrie RE, Pepper DA, O’Connell AM (2005) A process-based model of nitrogen cycling in forest plantations: Part I. Structure, calibration and analysis of the decomposition model. Ecol Model 187:426–448CrossRefGoogle Scholar
  29. de Bruijn AMG, Butterbach-Bahl K (2009) Linking carbon and nitrogen mineralization with microbial responses to substrate availability — the DECONIT model. Plant Soil 328:271–290. doi: 10.1007/s11104-009-0108-9 CrossRefGoogle Scholar
  30. de Bruijn AMG, Grote R, Butterbach-Bahl K (2011) An alternative modelling approach to predict emissions of N2O and NO from forest soils. Eur J For Res 130:755–773. doi: 10.1007/s10342-010-0468-y CrossRefGoogle Scholar
  31. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  32. Devendra C, Thomas D (2002) Smallholder farming systems in Asia. Agric Syst 71:17–25CrossRefGoogle Scholar
  33. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta 149:78–90. doi: 10.1007/BF00386231 PubMedCrossRefGoogle Scholar
  34. Fetzer S, Conrad R (1993) Effect of redox potential on methanogenesis by Methanosarcina barkeri. Arch Microbiol 160:108–113. doi: 10.1007/BF00288711 CrossRefGoogle Scholar
  35. Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. Exchange of trace gases between terrestrial ecosystems and the atmosphere, In: Andreae MO, Schimel DS (eds), John Wiley, New York, pp. 7–21, 1989Google Scholar
  36. Fumoto T, Kobayashi K, Li C, Hasegawa T (2008) Revising a process–based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Glob Chang Biol 14:382–402CrossRefGoogle Scholar
  37. Gaydon DS, Probert ME, Buresh RJ, Meinke H (2012) Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance. Eur J Agron 39:35–43. doi: 10.1016/j.eja.2012.01.004 CrossRefGoogle Scholar
  38. Grote R, Lehmann E, Brümmer C, Brüggemann N, Szarzynski J, Kunstmann H (2009) Modelling and observation of biosphere–atmosphere interactions in natural savannah in Burkina Faso, West Africa. Phys Chem Earth 34:251–260. doi: 10.1016/j.pce.2008.05.003 CrossRefGoogle Scholar
  39. Grote R, Kiese R, Grünwald T, Ourcival J-M, Granier A (2011) Modelling forest carbon balances considering tree mortality and removal. Agric For Meteorol 151:179–190CrossRefGoogle Scholar
  40. Haas E, Klatt S, Fröhlich A, Kraft P, Werner C, Kiese R, Grote R, Breuer L, Butterbach-Bahl K (2013) LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landsc Ecol 28:615–636. doi: 10.1007/s10980-012-9772-x CrossRefGoogle Scholar
  41. Haefele SM, Banayo NPM, Amarante ST, Siopongco JDLC, Mabesa RL (2013) Characteristics and management options for rice-maize systems in the Philippines. Field Crop Res 144:52–61CrossRefGoogle Scholar
  42. Holst J, Grote R, Offermann C, Ferrio JP, Gessler A, Mayer H, Rennenberg H (2010) Water fluxes within beech stands in complex terrain. Int J Biometeorol 54:23–36. doi: 10.1007/s00484-009-0248-x PubMedCrossRefGoogle Scholar
  43. Holzapfel-Pschorn A, Conrad R, Seiler W (1986) Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92:223–233CrossRefGoogle Scholar
  44. Huang Y, Sass RL, Fisher FM Jr (1998) A semi-empirical model of methane emission from flooded rice paddy soils. Glob Chang Biol 4:247–268. doi: 10.1046/j.1365-2486.1998.00129.x CrossRefGoogle Scholar
  45. Inubushi K, Wada H, Takai Y (1984) Easily decomposable organic matter in paddy soil. IV. Relationship between reduction process and organic matter decomposition. Soil Sci Plant Nutr 30:189–198CrossRefGoogle Scholar
  46. Jenkinson DS, Andrew SPS, Lynch JM, Goss MJ, Tinker PB (1990) The turnover of organic carbon and nitrogen in soil [and discussion]. Philos Trans R Soc B Biol Sci 329:361–368. doi: 10.1098/rstb.1990.0177 CrossRefGoogle Scholar
  47. Johansson C (1984) Field measurements of emission of nitric oxide from fertilized and unfertilized forest soils in Sweden. J Atmos Chem 1:429–442. doi: 10.1007/BF00053804 CrossRefGoogle Scholar
  48. Johansson C, Granat L (1984) Emission of nitric oxide from arable land. Tellus 36B:25–37. doi: 10.1111/j.1600-0889.1984.tb00048.x CrossRefGoogle Scholar
  49. Kesik M, Ambus P, Baritz R, Brüggemann N, Butterbach-Bahl K, Damm M, Duyzer J, Horvath L, Kiese R, Kitzler B, Leip A, Li C, Pihlatie M, Pilegaard K, Seufert G, Simpson D, Skiba U, Smiatek G, Vesala T, Zechmeister-Boltenstern S (2005) Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2:353–375. doi: 10.5194/bg-2-353-2005 CrossRefGoogle Scholar
  50. Kiese R, Li C, Hilbert DW, Papen H, Nutterbach-Bahl K (2005) Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in the Wet tropics of Australia. Glob Chang Biol 11:128–144. doi: 10.1111/j.1365-2486.2004.00873.x CrossRefGoogle Scholar
  51. Kiese R, Heinzeller C, Werner C, Wochele S, Grote R, Butterbach-Bahl K (2011) Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model. Environ Pollut 159:3204–3214. doi: 10.1016/j.envpol.2011.05.004 PubMedCrossRefGoogle Scholar
  52. Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14. doi: 10.1016/j.geoderma.2010.03.009 CrossRefGoogle Scholar
  53. Kraft P, Vaché KB, Frede H-G, Breuer L (2011) CMF: a hydrological programming language extension for integrated catchment models. Environ Model Softw 26:828–830CrossRefGoogle Scholar
  54. Kukal SS, Aggarwal GC (2002) Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field. Agric Water Manag 57:49–59. doi: 10.1016/S0378-3774(02)00037-9 CrossRefGoogle Scholar
  55. Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925. doi: 10.1016/S0038-0717(01)00117-1 CrossRefGoogle Scholar
  56. Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431CrossRefGoogle Scholar
  57. Li C (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 58:259–276CrossRefGoogle Scholar
  58. Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J Geophys Res 97:9759–9776CrossRefGoogle Scholar
  59. Li C, Aber J, Stange F, Butterbach-Bahl K, Papen H (2000) A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J Geophys Res 105:4369–4384CrossRefGoogle Scholar
  60. Li C, Mosier AR, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob Biogeochem Cycles 18:GB1043. doi: 10.1029/2003GB002045 CrossRefGoogle Scholar
  61. Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration can increase nitrous oxide emissions. Clim Chang 72:321–338CrossRefGoogle Scholar
  62. Lu Y, Arah JRM, Wassman R, Neue HU (2000) Simulation of methane production in anaerobic rice soils by a simple two-pool model. Nutr Cycl Agroecosyst 58:277–284CrossRefGoogle Scholar
  63. Masscheleyn PH, DeLaune RD, Patrick WH Jr (1993) Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: effect of soil oxidation-reduction status. Chemosphere 26:251–260. doi: 10.1016/0045-6535(93)90426-6 CrossRefGoogle Scholar
  64. Matthews RB, Wassmann R, Arah JRM (2000a) Using a crop-soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. I. Model development. Nutr Cycl Agroecosyst 58:11–159Google Scholar
  65. Matthews RB, Wassmann R, Buendia LV, Knox JW (2000b) Using a crop-soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. II. Model validation and sensitivity analysis. Nutr Cycl Agroecosyst 58:161–177CrossRefGoogle Scholar
  66. Moormann FR, van Breemen N (1978) Rice: soil, water, land. IRRI, Los BanosGoogle Scholar
  67. Parton WJ, Hartman M, Ojima DS, Schimel DS (1998) DAYCENT and its land surface submodel: description and testing. Glob Planet Chang 19:35–48CrossRefGoogle Scholar
  68. Potter CS (1997) An ecosystem simulation model for methane production and emission from wetlands. Glob Biogeochem Cycles 11:495–506CrossRefGoogle Scholar
  69. Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manag 80:5–22. doi: 10.1016/j.agwat.2005.07.001 CrossRefGoogle Scholar
  70. Roger PA (1996) Biology and management of the floodwater ecosystem in rice fields. IRRI, Los BanosGoogle Scholar
  71. Roger PA, Ladha JK (1992) Biological N2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. Dev Plant Soil Sci 49:41–55CrossRefGoogle Scholar
  72. Saito M, Watanabe I (1978) Organic matter production in rice field flood water. Soil Sci Plant Nutr 24(3):427–440CrossRefGoogle Scholar
  73. Sass RL, Fisher FM, Harcombe PA, Turner FT (2012) Methane production and emission in a Texas rice field. Glob Biogeochem Cycles 4(1):47–68. doi: 10.1029/GB004i001p00047 CrossRefGoogle Scholar
  74. Schütz H, Holzapfel-Pschorn A, Conrad R, Conrad R, Rennenberg H, Seiler W (1989a) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res 94:16405–16416. doi: 10.1029/JD094iD13p16405 CrossRefGoogle Scholar
  75. Schütz H, Seiler W, Conrad R (1989b) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–53CrossRefGoogle Scholar
  76. Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51CrossRefGoogle Scholar
  77. Slemr F, Seiler W (1984) Field measurements of NO and NO2 emissions from fertilized and unfertilized soils. J Atmos Chem 2:1–24. doi: 10.1007/BF00127260 CrossRefGoogle Scholar
  78. Slemr F, Seiler W (1991) Field study of environmental variables controlling the NO emissions from soil and the NO compensation point. J Geophys Res 96:13017–13031. doi: 10.1029/91JD01028 CrossRefGoogle Scholar
  79. Smakgahn K, Fumoto T, Yagi K (2009) Validation of revised DNDC model for methane emissions from irrigated rice fields in Thailand and sensitivity analysis of key factors. J Geophys Res 114:G02017. doi: 10.1029/2008JG000775 Google Scholar
  80. Spitters CJT, Toussaint HAJM, Goudriaan J (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation. Agric For Meteorol 38:217–229. doi: 10.1016/0168-1923(86)90061-4 CrossRefGoogle Scholar
  81. Stange F, Butterbach-Bahl K, Papen H, Zechmeister-Boltenstern S, Li C, Aber J (2000) A process-oriented model of N2O and NO emissions from forest soils: 2. Sensitivity analysis and validation. J Geophys Res 105:4385–4398. doi: 10.1029/1999JD900948 CrossRefGoogle Scholar
  82. Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1:17–26. doi: 10.3763/ghgmm.2010.0007 CrossRefGoogle Scholar
  83. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publications in climatology, vol X, no 3. Drexel Institute of Technology, Laboratory of Climatology, CentertonGoogle Scholar
  84. Timsina J, Buresh RJ, Dobermann A, Dixon J (2011) Rice-maize systems in Asia: current situation and potential. International Rice Research Institute and International Maize and Wheat Improvement Center, Los BañosGoogle Scholar
  85. Tuong TP, Bouman BAM, Mortimer M (2005) More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod Sci 8:231–241. doi: 10.1626/pps.8.231 CrossRefGoogle Scholar
  86. van Bodegom PM, Scholten JCM (2001) Microbial processes of CH4 production in a rice paddy soil: model and experimental validation. Geochim Cosmochim Acta 65:2055–2066. doi: 10.1016/S0016-7037(01)00563-4 CrossRefGoogle Scholar
  87. van Bodegom PM, Stams AJM (1999) Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Matter Energy Fluxes Anthropoc Environ 39:167–182. doi: 10.1016/S0045-6535(99)00101-0 Google Scholar
  88. van Bodegom PM, Leffelaar PA, Stams AJM, Wassmann R (2000) Modeling Methane Emissions from Rice Fields: Variability, Uncertainty, and Sensitivity Analysis of Processes Involved. Nutrient Cycling in Agroecosystems 58:231–248–248. doi:  10.1023/A:1009854905333
  89. van Bodegom PM, Wassmann R, Metra-Corton TM (2001a) A process-based model for methane emission predictions from flooded rice paddies. Glob Biogeochem Cycles 15:247–263CrossRefGoogle Scholar
  90. van Bodegom PM, Goudriaan J, Leffelaar P (2001b) A mechanistic model on methane oxidation in a rice rhizosphere. Biogeoemistry 55:145–177. doi: 10.1023/A:1010640515283 CrossRefGoogle Scholar
  91. Wang ZP, DeLaune RD, Patrick WH, Masscheleyn PH (1993) Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci Soc Am J 57:382–385. doi: 10.2136/sssaj1993.03615995005700020016x CrossRefGoogle Scholar
  92. Wassmann R, Neue HU, Lantin RS, Buendia LV, Rennenberg H (2000a) Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries. Nutr Cycl Agroecosyst 58:1–12CrossRefGoogle Scholar
  93. Wassmann R, Buendia LV, Lantin RS, Bueno CS, Lubigan LA, Umali A, Nocon NN, Javellana AM, Neue HU (2000b) Mechanisms of crop management impact on methane emissions from rice fields in Los Baños, Philippines. Nutr Cycl Agroecosyst 58:107–119. doi: 10.1023/A:1009838401699 CrossRefGoogle Scholar
  94. Weller S, Kraus D, Ayag KRP, Wassmann R, Butterbach-Bahl K, Kiese R (2014) Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutrient Cycling in Agroecosystems (under review)Google Scholar
  95. Werner C, Butterbach-Bahl K, Haas E, Hickler T, Kiese R (2007) A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model. Global Biogeochem Cycles 21. doi: 10.1029/2006GB002909
  96. Witt C, Cassman KG, Ottow JCG, Biker U (1998) Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management. Biol Fertil Soils 28:71–80. doi: 10.1007/s003740050465 CrossRefGoogle Scholar
  97. Witt C, Cassman KG, Olk DC, Biker U, Liboon SP, Samson MI, Ottow JCG (2000) Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil 225:263–278. doi: 10.1023/A:1026594118145 CrossRefGoogle Scholar
  98. Xu S, Jaffé PR, Mauzerall DL (2007) A process-based model for methane emission from flooded rice paddy systems. Ecol Model 205:475–491CrossRefGoogle Scholar
  99. Yao H, Conrad R, Wassmann R, Neue HU (1999) Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47:269–295. doi: 10.1007/BF00992910 CrossRefGoogle Scholar
  100. Yao H, Yagi K, Nouchi I (2000) Importance of physical plant properties on methane transport through several rice cultivars. Plant Soil 222:83–93CrossRefGoogle Scholar
  101. Yao Z, Zheng X, Wang R, Xie B, Butterbach-Bahl K, Zhu J (2013) Nitrous oxide and methane fluxes from a rice-wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmos Environ 79:641–649CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Kraus
    • 1
  • Sebastian Weller
    • 1
  • Steffen Klatt
    • 1
  • Edwin Haas
    • 1
  • Reiner Wassmann
    • 2
  • Ralf Kiese
    • 1
  • Klaus Butterbach-Bahl
    • 1
    • 3
    Email author
  1. 1.Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-IFU)Garmisch-PartenkirchenGermany
  2. 2.International Rice Research Institute (IRRI)Los BañosPhilippines
  3. 3.International Livestock Research Institute (ILRI)NairobiKenya

Personalised recommendations