Advertisement

Plant and Soil

, Volume 384, Issue 1–2, pp 271–287 | Cite as

Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens

  • Cédric Gonneau
  • Nicolas Genevois
  • Hélène Frérot
  • Catherine Sirguey
  • Thibault Sterckeman
Regular Article

Abstract

Background and aims

Noccaea caerulescens is a model plant for the understanding of trace metal accumulation and a source of cultivars for phytoextraction. The aim of this study was to investigate natural variation for trace metal accumulation, major nutrient uptake and growth parameters in 22 populations. The correlations among these traits were particularly examined to better understand the eco-physiology and the phytoextraction potential of the species.

Methods

Populations from three edaphic groups, i.e. calamine (CAL), serpentine (SERP) and non metalliferous (NMET) sites were grown in hydroponics for seven weeks at moderate trace metal exposure. Growth indicators, element contents and correlations between these variables were compared.

Results

All the phenotypic characteristics showed a wide variability among groups and populations. The SERP populations showed a smaller plant size, higher cation contents and strong correlations between all element concentrations. NMET populations did not differ in plant size from the CAL ones, but had higher Zn and Ni contents. The CAL populations showed higher Cd and Mn accumulations and lower Ca contents. The trade-off between biomass production and Cd, Ni and Zn accumulation was high in SERP populations and low in the CAL and NMET ones.

Conclusions

N. caerulescens is a genetically diverse species, showing specific features depending on the group and the population. These features may reflect the wide adaptive capacities of the species, and also reveal promising potential for phytoextraction of Cd, Ni and Zn.

Keywords

Hyperaccumulation Phenotyping Genetic variability Major element Trace metal 

Notes

Acknowledgments

Authors are grateful to Fabrice Roux (Laboratoire de Génétique et Evolution des Populations Végétales) and Nausicaa Noret (Laboratory of Plant Ecology and Biogeochemistry) for providing seeds and Romain Goudon of the Laboratoire Sols et Environnement for its precious help. They also thank Maxime Pauwels for carefully revising the manuscript.

Supplementary material

11104_2014_2208_MOESM1_ESM.xlsx (164 kb)
ESM 1 (XLSX 164 kb)

References

  1. Adamidis GC, Kazakou E, Fyllas NM, Dimitrakopoulos PG (2014) Species adaptive strategies and leaf economic relationships across serpentine and Non-serpentine habitats on Lesbos, eastern Mediterranean. PLoS One 9:e96034. doi: 10.1371/journal.pone.0096034 PubMedCrossRefPubMedCentralGoogle Scholar
  2. Assunção AGL, Bookum WM, Nelissen HJ et al (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419CrossRefGoogle Scholar
  3. Assuncão AGL, Bleeker P, Wilma M et al (2008) Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant Soil 303:289–299CrossRefGoogle Scholar
  4. Basic N, Keller C, Fontanillas P et al (2006) Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations. Plant Biol Stuttg 8:64–72PubMedCrossRefGoogle Scholar
  5. Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266CrossRefGoogle Scholar
  6. Chardot V, Echevarria G, Gury M et al (2007) Nickel bioavailability in an ultramafic toposequence in the Vosges mountains (France). Plant Soil 293:7–21CrossRefGoogle Scholar
  7. Cheng S-H, Willmann MR, Chen H-C, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485. doi: 10.1104/pp. 005645 PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cheng N-H, Pittman JK, Shigaki T et al (2005) Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol 138:2048–2060PubMedCrossRefPubMedCentralGoogle Scholar
  9. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486PubMedCrossRefGoogle Scholar
  10. Dechamps C, Roosens NH, Hotte C, Meerts P (2005) Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soil. Plant Soil 273:327–335CrossRefGoogle Scholar
  11. Escarré J, Lefèbvre C, Gruber W et al (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437CrossRefGoogle Scholar
  12. Escarré J, Lefèbvre C, Raboyeau S et al (2011) Heavy metal concentration survey in soils and plants of the Les Malines mining district (Southern France): implications for soil restoration. Water Air Soil Pollut 216:485–504. doi: 10.1007/s11270-010-0547-1 CrossRefGoogle Scholar
  13. Escarré J, Lefèbvre C, Frérot H, et al. (2013) Metal concentration and metal mass of metallicolous, non metallicolous and serpentine Noccaea caerulescens populations, cultivated in different growth media. Plant Soil 1–25. doi: 10.1007/s11104-013-1618-zGoogle Scholar
  14. Frérot H, Lefèbvre C, Petit C, Collin C, Dos Santos A, Escarré J (2005) Zinc tolerance and hyperaccumulation in F1 and F2 offspring from intra and interecotype crosses of Thlaspi caerulescens. New Phytol 165:111–119Google Scholar
  15. Halimaa P, Lin Y-F, Ahonen VH et al (2014) Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation. Environ Sci Technol 48:3344–3353. doi: 10.1021/es4042995 PubMedCrossRefGoogle Scholar
  16. Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259PubMedCrossRefGoogle Scholar
  17. Kazakou E, Dimitrakopoulos PG, Baker AJM et al (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508PubMedGoogle Scholar
  18. Kazakou E, Adamidis GC, Baker AJM et al (2010) Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance. Plant Soil 332:369–385. doi: 10.1007/s11104-010-0302-9 CrossRefGoogle Scholar
  19. Keller C, Diallo S, Cosio C et al (2006) Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field. Funct Plant Biol 33:673–684CrossRefGoogle Scholar
  20. Koopmans GF, Römkens P, Fokkema MJ et al (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156:905–914PubMedCrossRefGoogle Scholar
  21. Kruckeberg AR (1954) The ecology of serpentine soils. III. Plant species in relation to serpentine soils. Ecology 267–274.Google Scholar
  22. Küpper H, Parameswaran A, Leitenmaier B et al (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674PubMedCrossRefGoogle Scholar
  23. Lee J, Brooks RR, Reeves RD et al (1977) Plant-soil relationships in a new Caledonian serpentine flora. Plant Soil 46:675–680CrossRefGoogle Scholar
  24. Maxted AP, Black CR, West HM et al (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372. doi: 10.1016/j.envpol.2007.01.021 PubMedCrossRefGoogle Scholar
  25. McDowell SC, Akmakjian G, Sladek C, Mendoza-Cozatl D, Morrissey JB, Saini N, Mittler R, Baxter I, Salt DE, Ward JM, Schroeder JI, Guerinot ML, Harper JF (2013) Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions. Plos One 8. doi: 10.1371/journal.pone.0063014
  26. Meerts P, Van Isacker N (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol 133:221–231CrossRefGoogle Scholar
  27. Milner MJ, Mitani-Ueno N, Yamaji N, et al. (2014) Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Plant J n/a–n/a. doi: 10.1111/tpj.12480Google Scholar
  28. Molitor M, Dechamps C, Gruber W, Meerts P (2005) Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition. New Phytol 165:503–512PubMedCrossRefGoogle Scholar
  29. Peer WA, Mahmoudian M, Freeman JL, Lahner B, Richards EL, Reeves RD, Murphy AS, Salt DE (2006) Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. New Phytol 172:248–260Google Scholar
  30. Proctor J (1971) The plant ecology of serpentine: II. Plant response to serpentine soils. The Journal of Ecology 59:397. doi: 10.2307/2258320 CrossRefGoogle Scholar
  31. Redjala T, Sterckeman T, Morel JL (2009) Cadmium uptake by roots: contribution of apoplast and of high-and low-affinity membrane transport systems. Environ Exp Bot 67:235–242CrossRefGoogle Scholar
  32. Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:145–172CrossRefGoogle Scholar
  33. Roosens N, Verbruggen N, Meerts P et al (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26:1657–1672CrossRefGoogle Scholar
  34. Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35. doi: 10.1023/A:1022584220411 CrossRefGoogle Scholar
  35. Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University PressGoogle Scholar
  36. Van de Mortel JE, Almar Villanueva L, Schat H et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal Hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147. doi: 10.1104/pp. 106.082073 PubMedCrossRefPubMedCentralGoogle Scholar
  37. Van de Mortel JE, Schat H, Moerland PD et al (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324. doi: 10.1111/j.1365-3040.2007.01764.x PubMedCrossRefGoogle Scholar
  38. Van der Ent A, Baker AJ, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 1–16:319–334Google Scholar
  39. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedCrossRefGoogle Scholar
  40. Visioli G, Vincenzi S, Marmiroli M, Marmiroli N (2011) Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea caerulescens subsp. caerulescens. Environ. Exp. Bot.Google Scholar
  41. Walker RB (1954) The ecology of serpentine soils. II. Factors affecting plant growth on serpentine soils. Ecology 259–266.Google Scholar
  42. Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cédric Gonneau
    • 1
    • 2
  • Nicolas Genevois
    • 1
    • 2
  • Hélène Frérot
    • 3
  • Catherine Sirguey
    • 1
    • 2
  • Thibault Sterckeman
    • 1
    • 2
  1. 1.Université de Lorraine, LSE, UMR1120Vandœuvre-lès-Nancy cedexFrance
  2. 2.INRA, LSE, UMR1120Vandœuvre-lès-Nancy cedexFrance
  3. 3.Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198Université Lille1Villeneuve d’Ascq cedexFrance

Personalised recommendations