Plant and Soil

, Volume 385, Issue 1–2, pp 87–105 | Cite as

Unintended effects of biochars on short-term plant growth in a calcareous soil

  • Evan A. N. MarksEmail author
  • Josep M. Alcañiz
  • Xavier Domene
Regular Article


Background and aims

Biochar has demonstrably improved crop yields in weathered and acidic soils, but studies in calcareous soils are particularly lacking, so biochar effects on plant growth was investigated under these conditions.


Six biochars were obtained from different feedstocks and production technologies. Chemical characterization of fresh biochars included total and extractable nutrients, labile carbon, and Fourier transform infrared spectroscopy. Extractable nutrients were also evaluated in biochar-soil mixtures with a basic (pH >8.2) test soil. Bioassays with lettuce and ryegrass were carried out to relate biochar chemical properties to effects on plant biomass.


A sewage sludge slow pyrolysis char was stimulatory to plant growth, as was a slow pyrolysis pine wood char at an intermediate concentration, while gasification and fast-pyrolysis pine and poplar wood chars were strongly inhibitory, with reductions in biomass at realistic application rates of 5–19 t ha−1.


Statistical comparison of plant responses with biochar composition led to the assessment that plant responses were most correlated with volatile matter content and total P content, whose availability was likely regulated by pH and Ca content. Potential effects of phytotoxins were considered, but these were seen to be much less probable than effects due to nutrient availability.


Nutrient availability Volatile matter Phosphorus Effective concentration 


  1. Amonette JE, Joseph S (2009) Characteristics of biochar: microchemical properties. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 33–52Google Scholar
  2. Arnold WR, Cotsifas JS (2008) An assessment of the application factor used to derive the saltwater acute ambient water quality copper criterion. Integr Environ Assess Manag 4:252–254. doi: 10.1897/IEAM_2007-053 PubMedCrossRefGoogle Scholar
  3. Asai H, Samson BK, Stephan HM et al (2009) Biochar amendment techniques for upland rice production in Northern Laos. 1. soil physical properties, leaf SPAD and grain yield. Field Crop Res 111:81–84CrossRefGoogle Scholar
  4. ASTM International (2007) D1762-84: Standard test method for chemical analysis of wood charcoal. ASTM International, PAGoogle Scholar
  5. Blackwell P, Riethmuller G, Collins M (2009) Biochar application to soil. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 207–226Google Scholar
  6. Blackwell P, Krull E, Butler G et al (2010) Effect of banded biochar on dryland wheat production and fertiliser use in South-Western Australia: an agronomic and economic perspective. Soil Res 48:531–545CrossRefGoogle Scholar
  7. Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28:386–396. doi: 10.1002/ep CrossRefGoogle Scholar
  8. Bridle TR, Pritchard D (2004) Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci Technol 50:169–175PubMedGoogle Scholar
  9. Brookes PC, Joergensen RG (2006) Microbial biomass measurements by fumigation-extraction. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbial methods for assessing soil quality. CABI Publishing, King’s Lynn, pp 77–83Google Scholar
  10. Bruun S, Jensen E, Jensen L (2008) Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration. Org Geochem 39:839–845. doi: 10.1016/j.orggeochem.2008.04.020 CrossRefGoogle Scholar
  11. Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79. doi: 10.1016/j.soilbio.2011.11.019 CrossRefGoogle Scholar
  12. Carreira JA, Lajtha K (1997) Factors affecting phosphate sorption along a mediterranean, dolomitic soil and vegetation chronosequence. Eur J Soil Sci 48:139–149CrossRefGoogle Scholar
  13. Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 67–84Google Scholar
  14. Chintala R, Schumacher TE, Mcdonald LM et al (2014) Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean Soil, Air, Water 42:626–634. doi: 10.1002/clen.201300089 CrossRefGoogle Scholar
  15. Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39:1218–1223. doi: 10.2134/jeq2010.0204 PubMedCrossRefGoogle Scholar
  16. Clough TJ, Condron L, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293. doi: 10.3390/agronomy3020275 CrossRefGoogle Scholar
  17. Deal C, Brewer CE, Brown RC et al (2012) Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass Bioenergy 37:161–168. doi: 10.1016/j.biombioe.2011.12.017 CrossRefGoogle Scholar
  18. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  19. Deenik JL, McClellan T, Uehara G et al (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270. doi: 10.2136/sssaj2009.0115 CrossRefGoogle Scholar
  20. DeLuca TH, MacKenzie MD, Gundale MJ (2009) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 251–269Google Scholar
  21. Demeyer A, Voundi Nkana JC, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–95PubMedCrossRefGoogle Scholar
  22. Domene X, Mattana S, Hanley K et al (2014) Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol Biochem 72:152–162CrossRefGoogle Scholar
  23. Ducey TF, Ippolito JA, Cantrell KB et al (2013) Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Appl Soil Ecol 65:65–72. doi: 10.1016/j.apsoil.2013.01.006 CrossRefGoogle Scholar
  24. Elser JJ, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi: 10.1111/j.1461-0248.2007.01113.x PubMedCrossRefGoogle Scholar
  25. Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653PubMedCrossRefGoogle Scholar
  26. European Commission (2000) Working document on sludge: 3rd draft (ENV.E.3./LM). Brussels.Google Scholar
  27. Farrell M, Macdonald LM, Butler G et al (2013) Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol Fertil Soils 50:169–178. doi: 10.1007/s00374-013-0845-z CrossRefGoogle Scholar
  28. Garcia-Perez M (2008) The formation of polyaromatic hydrocarbons and dioxins during pyrolysis: A review of the literature with descriptions of biomass composition, fast pyrolysis technologies and thermochemical reactions. Washington State University Report WSUEEP08-010Google Scholar
  29. Gaskin JW, Speir RA, Harris K et al (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–657. doi: 10.2134/agronj2009.0083 CrossRefGoogle Scholar
  30. Granatstein D, Kruger C, Collins H, et al. (2009) Use of biochar from the pyrolysis of waste organic material as a soil amendment. Washington State Department of Ecology Report 09-07-062Google Scholar
  31. Gustafsson Ö, Haghseta F, Chan C et al (1997) Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability. Environ Sci Technol 31:203–209. doi: 10.1021/es960317s CrossRefGoogle Scholar
  32. Hossain MK, Strezov V, Chan KY, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167–1171. doi: 10.1016/j.chemosphere.2010.01.009 PubMedCrossRefGoogle Scholar
  33. International Biochar Initiative (2013) Standardized product definition and product testing guidelines for biochar that is used in soil. IBI-STD-01.1Google Scholar
  34. Ippolito J, Stromberger ME, Lentz R, Dungan R (2014) Hardwood biochar influences calcareous soil physicochemical and microbiological status. J Environ Qual 43:681–689. doi: 10.2134/jeq2013.08.0324 CrossRefGoogle Scholar
  35. Isnard P, Flammarion P, Roman G et al (2001) Statistical analysis of regulatory ecotoxicity tests. Chemosphere 45:659–669PubMedCrossRefGoogle Scholar
  36. Jones DL, Murphy DV, Khalid M et al (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731. doi: 10.1016/j.soilbio.2011.04.018 CrossRefGoogle Scholar
  37. Joseph S, Peacocke J, Lehmann J, Munroe P (2009) Developing a biochar classification and test methods. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 107–126Google Scholar
  38. Kookana R, Sarmah A, Van Zwieten L et al (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103–143CrossRefGoogle Scholar
  39. Lehmann J, Joseph S (2009) An introduction. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 1–9Google Scholar
  40. Lehmann J, Rillig MC, Thies J et al (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836. doi: 10.1016/j.soilbio.2011.04.022 CrossRefGoogle Scholar
  41. Lentz R, Ippolito J (2012) Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J Environ Qual 41:1033–1043. doi: 10.2134/jeq2011.0126 PubMedCrossRefGoogle Scholar
  42. Marks EAN, Mattana S, Alcañiz JM, Domene X (2014) Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays. Eur J Soil Biol 60:104–111. doi: 10.1016/j.ejsobi.2013.12.002 CrossRefGoogle Scholar
  43. Murphy J, Riley J (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  44. OECD (2006) Guideline 208. Terrestrial plant test: seedling emergence and seedling growth test. Organisation for Economic Co-Operation and Development (OECD), Paris, FranceGoogle Scholar
  45. Oguntunde PG, Abiodun BJ, Ajayi AE, van de Giesen N (2008) Effects of charcoal production on soil physical properties in Ghana. J Plant Nutr Soil Sci 171:591–596. doi: 10.1002/jpln.200625185 CrossRefGoogle Scholar
  46. Paton GI, Killham K, Weitz HJ, Semple KT (2005) Biological tools for the assessment of contaminated land: applied soil ecotoxicology. Soil Use Manage 21:487–499. doi: 10.1079/SUM2005350 CrossRefGoogle Scholar
  47. Poot A, Quik JTK, Veld H, Koelmans AA (2009) Quantification methods of black carbon: comparison of rock-eval analysis with traditional methods. J Chromatogr A 1216:613–22. doi: 10.1016/j.chroma.2008.08.011 PubMedCrossRefGoogle Scholar
  48. Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12Google Scholar
  49. Rousk J, Dempster DN, Jones DL (2013) Transient biochar effects on decomposer microbial growth rates: evidence from two agricultural case-studies. Eur J Soil Sci 64:770–776. doi: 10.1111/ejss.12103 CrossRefGoogle Scholar
  50. Rovira P, Ramón Vallejo V (2007) Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39:202–215. doi: 10.1016/j.soilbio.2006.07.021 CrossRefGoogle Scholar
  51. Santisteban JI, Mediavilla R, López-Pamo E et al (2004) Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments. J Paleolimnol 32:287–299CrossRefGoogle Scholar
  52. Schimmelpfennig S, Glaser B (2012) One step forward toward characterization: some important material properties to distinguish biochars. J Environ Qual 41:1001–1013. doi: 10.2134/jeq2011.0146 PubMedCrossRefGoogle Scholar
  53. Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44:9318–9323. doi: 10.1021/es101283d PubMedCrossRefGoogle Scholar
  54. Sohi S, Lopez-capel E, Krull E, Bol R (2009) Biochar, climate change and soil: a review to guide future research. CSIRO Land and Water Science Report 05/09Google Scholar
  55. Soil Survey Staff (2010) Keys to Soil Taxonomy 11th Ed. USDA-NRCSGoogle Scholar
  56. Song Y, Hahn HH, Hoffmann E (2002) The effect of carbonate on the precipitation of calcium phosphate. Environ Technol 23:207–215PubMedCrossRefGoogle Scholar
  57. Tan KH (1993) Principles of Soil Chemistry, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  58. Uchimiya M, Chang S, Klasson KT (2011a) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441. doi: 10.1016/j.jhazmat.2011.03.063 PubMedCrossRefGoogle Scholar
  59. Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011b) Chemosphere influence of soil properties on heavy metal sequestration by biochar amendment: 1 Copper sorption isotherms and the release of cations. Chemosphere 82:1431–1437. doi: 10.1016/j.chemosphere.2010.11.050 PubMedCrossRefGoogle Scholar
  60. Van Krevelen DW (1961) Coal: typology, chemistry, physics, constitution. Elsevier, AmsterdamGoogle Scholar
  61. Van Zwieten L, Sing B, Joseph S et al (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 227–249Google Scholar
  62. Ventura M, Sorrenti G, Panzacchi P et al (2013) Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. J Environ Qual 42:76. doi: 10.2134/jeq2012.0250 PubMedCrossRefGoogle Scholar
  63. Verheijen F, Jeffery S, Bastos AC, et al. (2010) Biochar application to soils - a critical scientific review of effects on soil properties, processes, and functions. 149. doi: 10.2788/472Google Scholar
  64. Villar MC, González-Prieto SJ, Carballas T (1998) Evaluation of three organic wastes for reclaiming burnt soils: improvement in the recovery of vegetation cover and soil fertility in pot experiments. Biol Fertil Soils 26:122–129CrossRefGoogle Scholar
  65. Yao FX, Arbestain MC, Virgel S et al (2010) Simulated geochemical weathering of a mineral ash-rich biochar in a modified soxhlet reactor. Chemosphere 80:724–732. doi: 10.1016/j.chemosphere.2010.05.026 PubMedCrossRefGoogle Scholar
  66. Yuan J, Xu R, Zhang H (2011a) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. doi: 10.1016/j.biortech.2010.11.018 PubMedCrossRefGoogle Scholar
  67. Yuan J, Xu R, Wang N, Li J (2011b) Amendment of acid soils with crop residues and biochars. Pedosphere 21:302–308CrossRefGoogle Scholar
  68. Zhang A, Liu Y, Pan G et al (2012) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China plain. Plant Soil 351:263–275. doi: 10.1007/s11104-011-0957-x CrossRefGoogle Scholar
  69. Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179. doi: 10.1016/j.soilbio.2011.02.005 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Evan A. N. Marks
    • 1
  • Josep M. Alcañiz
    • 1
    • 2
  • Xavier Domene
    • 1
    • 2
  1. 1.Center for Ecological Research and Forestry Applications(CREAF)(Cerdanyola del Vallès)Spain
  2. 2.Facultat de Ciències i Biociències, Universitat Autònoma de Barcelona(Cerdanyola del Vallès)Spain

Personalised recommendations