Plant and Soil

, Volume 382, Issue 1–2, pp 219–236 | Cite as

As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: do native symbionts matter?

  • Marie-Cécile Affholder
  • Anca-Diana Pricop
  • Isabelle Laffont-Schwob
  • Bruno Coulomb
  • Jacques Rabier
  • Andreea Borla
  • Carine Demelas
  • Pascale Prudent
Regular Article

Abstract

Background and aims

This is an in natura study aimed to determine the potential of Rosmarinus officinalis for phytostabilization of trace metal and metalloid (TMM)-contaminated soils in the Calanques National Park (Marseille, southeast of France). The link between rosemary tolerance/accumulation of As, Pb, Sb, and Zn and root symbioses with arbuscular mycorrhizal (AM) fungi and/or dark septate endophytes (DSE) was examined.

Methods

Eight sites along a gradient of contamination were selected for soil and root collections. TMM concentrations were analyzed in all the samples and root symbioses were observed. Moreover, in the roots of various diameters collected in the most contaminated site, X-ray microfluorescence methods were used to determine TMM localization in tissues.

Results

Rosemary accumulated, in its roots, the most labile TMM fraction in the soil. The positive linear correlation between TMM concentrations in soil and endophyte root colonization rates suggests the involvement of AM fungi and DSE in rosemary tolerance to TMM. Moreover, a typical TMM localization in root peripheral tissues of thin roots containing endophytes forming AM and DSE development was observed using X-ray microfluorescence.

Conclusions

Rosemary and its root symbioses appeared as a potential candidate for a phytostabilization process of metal-contaminated soils in Mediterranean area.

Keywords

Trace metals and metalloid multicontamination Arbuscular mycorrhizal fungi Dark septate endophytes Phytostabilization μXRF analyses 

Abbreviations

TMM

Trace metals and metalloids

AM

Arbuscular mycorrhizal

DSE

Dark septate endophytes

BCF

Bioconcentration factor

CF

Contamination factor

PLI

Pollution load index

Supplementary material

11104_2014_2135_Fig9_ESM.jpg (399 kb)
Figure in Supplementary Material

(JPEG 399 kb)

11104_2014_2135_MOESM1_ESM.doc (34 kb)
Table in Supplementary Material(DOC 33.5 kb)

References

  1. Affholder MC, Prudent P, Masotti V, Coulomb B, Rabier J, Nguyen-The B, Laffont-Schwob I (2013) Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: Human exposure risk. Sci Total Environ 454–455:219–229PubMedCrossRefGoogle Scholar
  2. Andrade SA, Abreu C, de Abreu M, Silveira AP (2004) Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Appl Soil Ecol 26:123–131CrossRefGoogle Scholar
  3. Baker A (1981) Accumulators and excluders - strategies in the response of plants to heavy-metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  4. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  5. Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351PubMedCrossRefGoogle Scholar
  6. Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi E, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496CrossRefGoogle Scholar
  7. Cala V, Cases MA, Walter I (2005) Biomass production and heavy metal content of Rosmarinus officinalis grown on organic waste-amended soil. J Arid Environ 62:401–412CrossRefGoogle Scholar
  8. Chen X, Wu CH, Tang JJ, Hu SJ (2005) Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60:665–671PubMedCrossRefGoogle Scholar
  9. Chern EC, Tsai DW, Ogunseitan OA (2007) Deposition of Glomalin-Related Soil Protein and Sequestered Toxic Metals into Watersheds. Environ Sci Technol 41:3566–3572PubMedCrossRefGoogle Scholar
  10. Chin L, Leung DWM, Taylor HH (2009) Lead chelation to immobilised Symphytum officinale L. (comfrey) root tannins. Chemosphere 76:711–715PubMedCrossRefGoogle Scholar
  11. Cornejo P, Meiera S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160PubMedCrossRefGoogle Scholar
  12. De Jong L, Moreau X, Bestel I, Beaudoin E, Aimé A, Dolain C, Gladys Saez G, Tonetto A, Barthélémy P, Thiéry A (2013) Uptake of quantum dots into a freshwater flatworm : intracellular accumulation and transmission from parents to offspring. J Nanosci Lett 3:28Google Scholar
  13. Del Val C, Barea JM, Azcon-Aguilar C (1999) Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Appl Soil Ecol 11:261–269CrossRefGoogle Scholar
  14. Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106CrossRefGoogle Scholar
  15. El-Rjoob A-WO, Massadeh AM, Omari MN (2008) Evaluation of Pb, Cu, Zn, Cd, Ni and Fe levels in Rosmarinus officinalis labaiatae (Rosemary) medicinal plant and soils in selected zones in Jordan. Environ Monit Assess 140:61–68PubMedCrossRefGoogle Scholar
  16. Estaún V, Savé R, Biel C (1997) AM inoculation as a biological tool to improve plant revegetation of a disturbed soil with Rosmarinus officinalis under semi-arid conditions. Appl Soil Ecol 6:223–229CrossRefGoogle Scholar
  17. Ettler V, Tejnecky V, Mihaljevic M, Sebek O, Zuna M, Vanek A (2010) Antimony mobility in lead smelter-polluted soils. Geoderma 155:409–418CrossRefGoogle Scholar
  18. Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60CrossRefGoogle Scholar
  19. Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. New Phytol 95:247–261CrossRefGoogle Scholar
  20. Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122PubMedCrossRefGoogle Scholar
  21. Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefGoogle Scholar
  22. Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389PubMedCrossRefGoogle Scholar
  23. Haselwandter K, Read DJ (1982) The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia 53:352–354CrossRefGoogle Scholar
  24. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140PubMedCrossRefGoogle Scholar
  25. ISO 10390 (2005) Soil quality—determination of pH. French version EN ISO 10390, AFNOR ParisGoogle Scholar
  26. ISO 10694 (1995) Soil quality—determination of organic and total carbon after dry combustion (elementary analysis). French version EN ISO 10694, AFNOR ParisGoogle Scholar
  27. ISO 11261 (1995) Soil quality—determination of total nitrogen—modified Kjeldhahl method. French version EN ISO 11261, AFNOR ParisGoogle Scholar
  28. ISO 11263 (1994) Soil quality—determination of phosphorus—spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution. French version EN ISO 11263, AFNOR ParisGoogle Scholar
  29. ISO 22036 (2008) Soil quality—determination of trace elements in extracts of soil by inductively coupled plasma-atomic emission spectrometry (ICP-AES). French version EN ISO 22036, AFNOR ParisGoogle Scholar
  30. Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211CrossRefGoogle Scholar
  31. Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Biogeochem Process Role Heavy Met Soil Environ 122:143–149Google Scholar
  32. Kovacik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27:605–615PubMedCrossRefGoogle Scholar
  33. Laffont-Schwob I, Dumas PJ, Pricop A, Rabier J, Miché L, Affre L, Masotti V, Prudent P, Tatoni T (2011) Insights on metal-tolerance and symbionts of the rare species Astragalus tragacantha aiming at phytostabilization of polluted soils and plant conservation. Ecol Mediterr Rev Int Ecol Méditerr Int J Mediterr Ecol 37:57–62Google Scholar
  34. Li T, Liu MJ, Zhang XT, Zhang HB, Sha T, Zhao ZW (2011) Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci Total Environ 409:1069–1074PubMedCrossRefGoogle Scholar
  35. Madejon P, Burgos P, Cabrera F, Madejon E (2009) Phytostabilization of amended soils polluted with trace elements using the Mediterranean shrub: Rosmarinus officinalis. Int J Phytoremediat 11:542–557CrossRefGoogle Scholar
  36. Meers E, Samson R, Tack F, Ruttens A, Vandegehuchte M, Vangronsveld J, Verloo MG (2007) Phytoavailability assessment of heavy metals in soil by single extractions and accumulation by Phaseolus vulgaris. Environ Exp Bot 60:385–396CrossRefGoogle Scholar
  37. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530Google Scholar
  38. Morel JL (1997) Assessment of phytoavailability of trace elements in soils. Analusis 25:M70–M72Google Scholar
  39. Moreno-Jimenez E, Vazquez S, Carpena-Ruiz RO, Esteban E, Penalosa JM (2011) Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain: a field experiment. J Environ Manag 92:1584–1590CrossRefGoogle Scholar
  40. Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337CrossRefGoogle Scholar
  41. Pawlak-Sprada S, Stobiecki M, Deckert J (2011) Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part II. Profiling of isoflavonoids and their glycoconjugates induced in roots of lupine (Lupinus luteus) seedlings treated with cadmium and lead. Acta Biochim Pol 58:217–223PubMedGoogle Scholar
  42. Phillips J, Hayman D (1970) Improved procedures for clearing roots and staining parasitics and arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  43. Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39PubMedCrossRefGoogle Scholar
  44. Purin S, Rillig MC (2007) The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function. Pedobiologia 51:123–130CrossRefGoogle Scholar
  45. Quevauviller P (1998) Operationally defined extraction procedures for soil and sediment analysis I. Standardization. TrAC Trends Anal Chem 17:289–298CrossRefGoogle Scholar
  46. Rabie GH (2005) Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. Afr J Biotechnol 4:332–345Google Scholar
  47. Rabier J, Laffont-Schwob I, Bouraima-Madjebi S, Léon V, Prudent P, Viano J, Nabors MW, Pilon-Smits EA (2007) Characterization of metal tolerance and accumulation in Grevillea exul var exul. Int J Phytoremediat 9:419–435CrossRefGoogle Scholar
  48. Rashed MN (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater 178:739–746PubMedCrossRefGoogle Scholar
  49. Raveux O (2002) L’usine à plomb de l’Escalette: le dernier grand vestige de la métallurgie marseillaise du plomb. Industries en Provence 10:7–9Google Scholar
  50. Regvar M, Likar M, Piltaver A, Kugonic N, Smith JE (2010) Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant Soil 330:345–356CrossRefGoogle Scholar
  51. Sánchez-Blanco MJ, Ferrández T, Morales MA, Morte A, Alarcon JJ (2004) Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol 161:675–682PubMedCrossRefGoogle Scholar
  52. Sánchez-Castro I, Ferrol N, Cornejo P, Barea JM (2012) Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza 22:449–460PubMedCrossRefGoogle Scholar
  53. Sekeroglu N, Ozkutlu F, Kara SM, Ozguven M (2008) Determination of cadmium and selected micronutrients in commonly used and traded medicinal plants in Turkey. J Sci Food Agric 88:86–90CrossRefGoogle Scholar
  54. Testiati E, Parinet J, Massiani C, Laffont-Schwob I, Rabier J, Pfeifer HR, Lenoble V, Masotti V, Prudent P (2013) Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: evaluation of the phytostabilization potential. J Hazard Mater 248–249:131–141PubMedCrossRefGoogle Scholar
  55. Tschan M, Robinson BH, Schulin R (2009) Antimony in the soil–plant system—a review. Environ Chem 6:106–115CrossRefGoogle Scholar
  56. Turrini A, Sbrana C, Strani P, Pezzarossa B, Risaliti R, Giovannetti M (2010) Arbuscular mycorrhizal fungi of a Mediterranean island (Pianosa), within a UNESCO Biosphere Reserve. Biol Fertil Soils 46:511–520CrossRefGoogle Scholar
  57. Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:887–894PubMedCrossRefGoogle Scholar
  58. Vodnik D, Grčman H, Maček I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136PubMedCrossRefGoogle Scholar
  59. Whitfield L, Richards AJ, Rimmer DL (2004) Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza 14:55–62PubMedCrossRefGoogle Scholar
  60. Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ Pollut 158:1169–1181PubMedCrossRefGoogle Scholar
  61. Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107CrossRefGoogle Scholar
  62. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Netw Ecol 2011:1–20Google Scholar
  63. Xiong JB, Mahmood Q, Yue M (2011) The potential of Sedum alfredii Hance for the biosorption of some metals from synthetic wastewater. Desalination 267:154–159CrossRefGoogle Scholar
  64. Yang R, Yu G, Tang J, Chen X (2008) Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.). J Environ Sci-China 20:739–744PubMedCrossRefGoogle Scholar
  65. Yaylali-Abanuz G (2011) Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchem J 99:82–92CrossRefGoogle Scholar
  66. Zhang HH, Tang M, Chen H, Zheng CL, Niu ZC (2010) Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. Eur J Soil Biol 46:306–311CrossRefGoogle Scholar
  67. Zheng N, Wang Q, Zheng D (2007) Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Sci Total Environ 383:81–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marie-Cécile Affholder
    • 1
  • Anca-Diana Pricop
    • 1
    • 2
  • Isabelle Laffont-Schwob
    • 2
  • Bruno Coulomb
    • 1
  • Jacques Rabier
    • 2
  • Andreea Borla
    • 2
  • Carine Demelas
    • 1
  • Pascale Prudent
    • 1
  1. 1.Aix Marseille Université, CNRS, Laboratoire de Chimie de l’Environnement (LCE)Marseille cedex 03France
  2. 2.Aix Marseille Université, Avignon Université, CNRS, IRD, Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE)Marseille cedex 03France

Personalised recommendations