Plant and Soil

, Volume 382, Issue 1–2, pp 301–315 | Cite as

Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador: response of biomass and plant morphology to elevated Al concentrations

  • Agnes Rehmus
  • Moritz Bigalke
  • Carlos Valarezo
  • Julio Mora Castillo
  • Wolfgang WilckeEmail author
Regular Article



In acid tropical forest soils (pH <5.5) increased mobility of aluminum might limit aboveground productivity. Therefore, we evaluated Al phytotoxicity of three native tree species of tropical montane forests in southern Ecuador.


An hydroponic dose-response experiment was conducted. Seedlings of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson were treated with 0, 300, 600, 1200, and 2400 μ M Al and an organic layer leachate. Dose-response curves were generated for root and shoot morphologic properties to determine effective concentrations (EC).


Shoot biomass and healthy leaf area decreased by 44 % to 83 % at 2400 μ M Al, root biomass did not respond (C. odorata), declined by 51 % (H. americanus), or was stimulated at low Al concentrations of 300 μ M (T. chrysantha). EC10 (i.e. reduction by 10 %) values of Al for total biomass were 315 μ M (C. odorata), 219 μ M (H. americanus), and 368 μ M (T. chrysantha). Helicarpus americanus, a fast growing pioneer tree species, was most sensitive to Al toxicity. Negative effects were strongest if plants grew in organic layer leachate, indicating limitation of plant growth by nutrient scarcity rather than Al toxicity.


Al toxicity occurred at Al concentrations far above those in native organic layer leachate.


Aluminum toxicity Tropical forest tree seedlings Dose-response curves Organic layer leachate 



We thank Karoline Klaus, Katharina Kitzinger, Jose Luis Peña Caivinagua, and Orly Mendoza Aguirre for support in set up of the experiment, Rainer Rees Mertins and Bernd Felderer, ETH Zurich, CH, for support with WinRhizo, Nature and Culture International in Loja, EC, for providing the study area and the research station, Ecuadorian authorities for the research permit, and the German Research Foundation (DFG) for funding (FOR 816, Wi 1601/8-2).


  1. Alleoni LRF, Cambri MA, Caires EF, Garbuio FJ (2010) Acidity and aluminum speciation as affected by surface liming in tropical no-till soils. Soil Sci Soc Am J 74:1010–1017CrossRefGoogle Scholar
  2. Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Global Biogeochem Cy 22:1–16. doi: 10.1029/2007GB003158 CrossRefGoogle Scholar
  3. Bruijnzeel L, Veneklaas E (1998) Climatic conditions and tropical, montane forest productivity: the fog has not lifted yet. Ecology 79:3–9. doi: 10.2307/176859 CrossRefGoogle Scholar
  4. Bruijnzeel LA (2001) Hydrology of tropical montane cloud forests: a reassessment. Water Resour Res 1:1–18Google Scholar
  5. Brunner I, Sperisen C (2013) Aluminium exclusion and aluminium tolerance in woody plants. Front Plant Sci 4:1–12. doi: 10.3389/fpls.2013.00172 Google Scholar
  6. Chenery EM (1948) Aluminium in the plant world. Kew Bull 3:173–183CrossRefGoogle Scholar
  7. Cronan CS, Grigal DF (1995) Use of calcium: aluminum ratios as indicators of stress in forest ecosystems. J Environ Qual 24:209–226CrossRefGoogle Scholar
  8. Cuenca G, Herrera R, Medina E (1990) Aluminium tolerance in trees of a tropical cloud forest. Plant Soil 125:169–175. doi: 10.1007/BF00010654 CrossRefGoogle Scholar
  9. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321. doi: 10.1104/pp.107.2.315 PubMedCentralPubMedGoogle Scholar
  10. Delhaize E, Ma J, Ryan P (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17:341–348PubMedCrossRefGoogle Scholar
  11. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi: 10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  12. Graham CJ (2001) The influence of nitrogen source and aluminum on growth and elemental composition of nemaguard peach seedlings. J Plant Nutr 24:423–439. doi: 10.1081/100104970 CrossRefGoogle Scholar
  13. Hafkenscheid RL (2000) Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. Print Partners Ipskamp, EnschedeGoogle Scholar
  14. Hajiboland R, Bahrami Rad S, Barceló J, Poschenrieder C (2013) Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J Plant Nutr Soil Sci 176:616–625. doi: 10.1002/jpln.201200311 CrossRefGoogle Scholar
  15. Harris RW (1992) Root-shoot ratios. J Arboric 18:39–42Google Scholar
  16. Hoagland D, Arnon D (1950) The water-culture method for growing plants without soil. University of California, BerkeleyGoogle Scholar
  17. Homeier J (2008) The influence of topography on forest structure and regeneration dynamics in an Ecuadorian montane forest. In: Gradstein, SR, Homeier, J, Gansert, D, Homeier, J, Series 2, Universitätsverlag, GöttingenGoogle Scholar
  18. Homeier J, Hertel D, Camenzind T, Cumbicus NL, Maraun M, Martinson GO, Poma LN, Rillig MC, Sandmann D, Scheu S, Veldkamp E, Wilcke W, Wullaert H, Leuschner C (2012) Tropical Andean forests are highly susceptible to nutrient inputs - rapid effects of experimental N and P addition to an Ecuadorian montane forest. Plos One 7:1–10. doi: 10.1371/journal.pone.0047128 Google Scholar
  19. Huang J, Shaff JE, Grunes DL, Kochian LV (1992) Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiol 98:230–237PubMedCentralPubMedCrossRefGoogle Scholar
  20. Huang J, Bachelard EP (1993) Effects of aluminium on growth and cation uptake in seedlings of Eucalyptus mannifera and Pinus radiata. Plant Soil 149:121–127. doi: 10.1007/BF00010769 CrossRefGoogle Scholar
  21. Jansen S, Watanabe T, Smets E (2002) Aluminium accumulation in leaves of 127 species in melastomataceae, with comments on the order myrtales. Ann Bot 90:53–64. doi: 10.1093/aob/mcf142 PubMedCrossRefGoogle Scholar
  22. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  23. Kidd PS, Proctor J (2000) Effects of aluminium on the growth and mineral composition of Netula pendula Roth. J Exp Bot 51:1057–1066. doi: 10.1093/jexbot/51.347.1057 PubMedCrossRefGoogle Scholar
  24. Kinraide TB (1993) Aluminum enhancement of plant growth in acid rooting media. a case of reciprocal alleviation of toxicity by two toxic cations. Physiol Plant 88:619–625. doi: 10.1111/j.1399-3054.1993.tb01380.x CrossRefGoogle Scholar
  25. Kinraide TB (2003) Toxicity factors in acidic forest soils: attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Cg2+ upon root elongation. Eur J Soil Sci 54:323–333. doi: 10.1046/j.1365-2389.2003.00538.x CrossRefGoogle Scholar
  26. Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260. doi: 10.1146/annurev.pp.46.060195.001321 CrossRefGoogle Scholar
  27. Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493. doi: 10.1146/annurev.arplant.55.031903.141655 PubMedCrossRefGoogle Scholar
  28. Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8:219–230. doi: 10.1016/j.baae.2006.02.004 CrossRefGoogle Scholar
  29. Macdonald T, Martin R (1988) Aluminum ion in biological systems. Trends Biochem Sci 13:15–19. doi: 10.1016/0968-0004(88)90012-6 PubMedCrossRefGoogle Scholar
  30. Mosandl R, Günter S (2008) Sustainable management of tropical mountain forests in Ecuador. Biodivers Ecol Ser 2:193Google Scholar
  31. Osaki M, Watanabe T, Tadano T (1997) Beneficial effect of aluminum on growth of plants adapted to low pH soils. Soil Sci Plant Nutr 43:551–563. doi: 10.1080/00380768.1997.10414782 CrossRefGoogle Scholar
  32. Pellet D, Papernik L, Jones D, Darrah P, Grunes D, Kochian L (1997) Involvement of multiple aluminium exclusion mechanisms in aluminium tolerance in wheat. Plant Soil 192:63–68. doi: 10.1023/A:1004256121772 CrossRefGoogle Scholar
  33. Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795. doi: 10.1007/BF00197346 CrossRefGoogle Scholar
  34. Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121:499–513CrossRefGoogle Scholar
  35. Revelle W (2013) psych: procedures for personality and psychological research, Northwestern University, Evanston, Illinois, USA, Version = 1.3.10.
  36. Rout GR, Samantaray S, Das P (2001) Aluminium toxicity in plants: a review. Agronomie 21:3–21CrossRefGoogle Scholar
  37. Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446. doi: 10.1093/jxb/44.2.437 CrossRefGoogle Scholar
  38. Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH, Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62:9–20. doi: 10.1093/jxb/erq272 PubMedCrossRefGoogle Scholar
  39. Schaedle M, Thornton F, Raynal D, Tepper H (1989) Response of tree seedlings to aluminum. Tree Physiol 5:337–356PubMedCrossRefGoogle Scholar
  40. Thornton F, Schaedle M, Raynal D (1987) Effects of aluminum on red spruce seedlings in solution culture. Environ Exper Bot 27:489–498. doi: 10.1016/0098-8472(87)90030-X CrossRefGoogle Scholar
  41. Watanabe T, Osaki M, Tadano T (1998) Effects of nitrogen source and aluminum on growth of tropical tree seedlings adapted to low pH soils. Soil Sci Plant Nutr 44:655–666. doi: 10.1080/00380768.1998.10414489 CrossRefGoogle Scholar
  42. Wilcke W, Yasin S, Valarezo C, Zech W (2001) Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry 55:45–72. doi: 10.1023/A:1010631407270 CrossRefGoogle Scholar
  43. Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J (2008) Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci 171:220–230. doi: 10.1002/jpln.200625210 CrossRefGoogle Scholar
  44. Wilcke W, Leimer S, Peters T, Emck RRP, Trachte K, Valarezo C, Bendix J (2013) The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Glob Biogeochem Cycle. doi: 10.1002/2012GB004471
  45. Wullaert H, Bigalke M, Homeier J, Cumbicus N, Valarezo C, Wilcke W (2013) Short-term response of the Ca cycle of a montane forest in Ecuador to low experimental CaCl2 additions. J Plant Nutr Soil Sci:1–12. doi: 10.1002/jpln.201300146

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Agnes Rehmus
    • 1
  • Moritz Bigalke
    • 1
  • Carlos Valarezo
    • 2
  • Julio Mora Castillo
    • 3
  • Wolfgang Wilcke
    • 1
    Email author
  1. 1.Geographic InstituteUniversity of BernBernSwitzerland
  2. 2.Dirección General de InvestigacionesUniversidad Nacional de Loja, Ciudadela Universitaria Guillermo FalconíLojaEcuador
  3. 3.Institute of SilvicultureTechnische Universität MünchenFreisingGermany

Personalised recommendations