Plant and Soil

, Volume 380, Issue 1–2, pp 211–229 | Cite as

Wheat root diversity and root functional characterization

  • Alireza Nakhforoosh
  • Heinrich Grausgruber
  • Hans-Peter Kaul
  • Gernot Bodner
Regular Article


Background and Aims

Under limited moisture conditions, roots can play an outstanding role with respect to yield stability by effective absorption of water from soil. A targeted integration of root traits into plant breeding programs requires knowledge on the existing root diversity and access to easy and cost-effective methods. This study aimed to assess wheat root diversity, root properties in relation to water regime, and the efficiency of root capacitance for in situ screening.


Root morphological, anatomical properties and root capacitance of wheat species from different ploidy levels were studied under field conditions in 2 years contrasting in water regime. Soil water content was weekly measured.


Significant genotypic differences were observed for most root traits. The investigated genotypes exploited different strategies to maximize soil water depletion, e.g. high topsoil root length density, low tissue mass density, high specific root length, deep rooting and looser xylem vessels. Multivariate statistics of root traits revealed an acceptable genotypic differentiation according to regional origin, genetics and capacity to extract soil water.


Under supply-driven environments, dehydration avoidance via water uptake maximization can be achieved through high topsoil rooting density. In this regard, root capacitance can be useful for in situ screening.


Drought Electrical capacitance Spring wheat Triticum spp Water stress 



Rooting distribution


Root electrical capacitance


Root diameter


Root length density


Root to shoot ratio


Specific root length


Tissue mass density



We thank Dr. Elsa Arcalis (IAGZ, BOKU) for her assistance in root anatomical measurements. Original seeds of plant genetic resources were provided by the genebank curators H.E. Bockelman (NSGC, USDA-ARS), A. Graner (IPK, Gatersleben), T. Payne (CIMMYT), J. Lafferty (SZD, Probstdorf), and by G. Ghambashidze (GSAU, Tbilisi). We also thank the reviewers for constructive comments to improve the manuscript.

Supplementary material

11104_2014_2082_MOESM1_ESM.pdf (417 kb)
ESM 1 (PDF 416 kb)


  1. Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412. doi: 10.1080/07352680802467736 CrossRefGoogle Scholar
  2. Aulen M, Shipley B (2012) Non-destructive estimation of root mass using electrical capacitance on ten herbaceous species. Plant Soil 355:41–49. doi: 10.1007/s11104-011-1077-3 CrossRefGoogle Scholar
  3. Blum A (1996) Yield potential and drought resistance: Are they mutually exclusive? In: Reynolds MPS, Rajaram S, McNab A (eds) Increasing yield potential in wheat: Breaking the barriers. CIMMYT, Mexico, pp 90–100Google Scholar
  4. Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112:119–123. doi: 10.1016/j.fcr.2009.03.009 CrossRefGoogle Scholar
  5. Blum A (2011) Plant breeding for water-limited environments. Springer Science + Business Media, New York. doi: 10.1007/978-1-4419-7491-4 CrossRefGoogle Scholar
  6. Blum A, Mayer J, Gozlan G (1983) Associations between plant production and some physiological components of drought resistance in wheat. Plant Cell Environ 6:219–225. doi: 10.1111/1365-3040.ep11587630 Google Scholar
  7. Bodner G, Leitner D, Nakhforoosh A, Sobotik M, Moder K, Kaul HP (2013) A statistical approach to root system classification. Front Plant Sci 4:292. doi: 10.3389/fpls.2013.00292 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Böhm W (1979) Methods of studying root systems. Springer, Berlin. doi: 10.1007/978-3-642-67282-8 CrossRefGoogle Scholar
  9. Bowman JC (1972) Genotype × environment interactions. Ann Genet Sel Anim 4:117–123. doi: 10.1186/1297-9686-4-1-117 PubMedCentralPubMedGoogle Scholar
  10. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14. doi: 10.1016/j.fcr.2007.07.004 CrossRefGoogle Scholar
  11. Chloupek O (1972) The relationship between electric capacitance and some other parameters of plant roots. Biol Plant 14:227–230. doi: 10.1007/BF02921255 CrossRefGoogle Scholar
  12. Chloupek O (1977) Evaluation of the size of a plant’s root system using its electrical capacitance. Plant Soil 48:525–532. doi: 10.1007/BF02187258 CrossRefGoogle Scholar
  13. Chloupek O, Skácel M, Ehrenbergerova J (1999) Effect of divergent selection for root size in field-grown alfalfa. Can J Plant Sci 79:93–95. doi: 10.4141/P95-176 CrossRefGoogle Scholar
  14. Chloupek O, Forster BP, Thomas WTB (2006) The effect of semi-dwarf genes on root system size in field-grown barley. Theor Appl Genet 112:779–786. doi: 10.1007/s00122-005-0147-4 PubMedCrossRefGoogle Scholar
  15. Chloupek O, Dostál V, Středa T, Psota V, Dvořáčková O (2010) Drought tolerance of barley varieties in relation to their root system size. Plant Breed 129:630–636. doi: 10.1111/j.1439-0523.2010.01801.x CrossRefGoogle Scholar
  16. Clark LJ, Price AH, Steele KA, Whalley WR (2008) Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice. Funct Plant Biol 35:1163–1171. doi: 10.1071/FP08132 CrossRefGoogle Scholar
  17. Clark RT, Famoso AN, Zhao K, Shaff JE, Craft EJ, Bustamente CD, McCouch S, Aneshansley DJ, Kochian LV (2013) High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ 36:454–466. doi: 10.1111/j.1365-3040.2012.02587.x PubMedCrossRefGoogle Scholar
  18. Dalton FN (1995) In situ root extent measurements by electrical capacitance methods. Plant Soil 173:157–165. doi: 10.1007/BF00155527 CrossRefGoogle Scholar
  19. Dietrich RC, Bengough AG, Jones HG, White PJ (2012) A new physical interpretation of plant root capacitance. J Exp Bot 63:6149–6159. doi: 10.1093/jxb/ers264 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Dietrich RC, Bengough AG, Jones HG, White PJ (2013) Can root electrical capacitance be used to predict root mass in soil? Ann Bot 112:457–464. doi: 10.1093/aob/mct044 PubMedCrossRefGoogle Scholar
  21. Draye X, Kim Y, Lobet G, Javaux M (2010) Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. J Exp Bot 61:2145–2155. doi: 10.1093/jxb/erq077 PubMedCrossRefGoogle Scholar
  22. Ehdaie B, Layne AP, Waines JG (2012) Root system plasticity to drought influences grain yield in bread wheat. Euphytica 186:219–232. doi: 10.1007/s10681-011-0585-9 CrossRefGoogle Scholar
  23. El Hafid R, Smith DH, Karrou M, Samir K (1998) Root and shoot growth, water use and water use efficiency of spring durum wheat under early-season drought. Agronomie 18:181–195. doi: 10.1051/agro:19980302 CrossRefGoogle Scholar
  24. Ellis T, Murray W, Kavalieris L (2013) Electrical capacitance of bean (Vicia faba) root systems was related to tissue density – a test for the Dalton Model. Plant Soil 366:575–584. doi: 10.1007/s11104-012-1424-z CrossRefGoogle Scholar
  25. Emebiri L, Matassa V, Moody DB (2005) GENSTAT programs for performing Muir’s alternative partitioning of genotype-by-environment interaction. J Hered 96:78–79. doi: 10.1093/jhered/esi003 PubMedCrossRefGoogle Scholar
  26. FAO (2007) World reference base for soil resources 2006, first update 2007. World Soil Resources Reports 103. Rome, Italy: Food and Agriculture Organization of the United NationsGoogle Scholar
  27. FAO (2009) How to feed the world in 2050, High-level expert forum, 12–13 Oct, Rome, Issue brief, 35 pp., Rome, Italy: Food and Agriculture Organization of the United Nations. Accessed 15 Jul 2013
  28. Fitter AH (1994) Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity of plants. Academic, New York, pp 305–323CrossRefGoogle Scholar
  29. Gaur PM, Krishnamurthy L, Kashiwagi J (2008) Improving drought-avoidance root traits in chickpea (Cicer arietinum L.)—Current status of research at ICRISAT. Plant Prod Sci 11:3–11CrossRefGoogle Scholar
  30. Gregory PJ (2006) Plant roots: Growth, activity and interactions with the soil. Blackwell Publishing Ltd, OxfordCrossRefGoogle Scholar
  31. Gregory PJ, McGowan M, Biscoe PV, Hunter B (1978) Water relations of winter wheat. 1. Growth of the root system. J Agric Sci 91:91–102. doi: 10.1017/S0021859600056653 CrossRefGoogle Scholar
  32. Grossman JD, Rice KJ (2012) Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evol Appl 5:850–857. doi: 10.1111/j.1752-4571.2012.00263.x PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hasheminasab H, Assad MT, Aliakbari A, Sahhafi SR (2012) Evaluation of some physiological traits associated with improved drought tolerance in Iranian wheat. Ann Biol Res 3:1719–1725Google Scholar
  34. Himmelbauer ML, Loiskandl W, Kastanek F (2004) Estimating length, average diameter and surface area of roots using two different image analyses systems. Plant Soil 260:111–120. doi: 10.1023/B:PLSO.0000030171.28821.55 CrossRefGoogle Scholar
  35. Hockett EA (1986) Relationship of adventitious roots and agronomic characteristics in barley. Can J Plant Sci 66:257–280. doi: 10.4141/cjps86-040 CrossRefGoogle Scholar
  36. Hund A, Trachsel S, Stamp P (2009) Growth of axile and lateral roots of maize: I. Development of a phenotying platform. Plant Soil 325:335–349. doi: 10.1007/s11104-009-9984-2 CrossRefGoogle Scholar
  37. Hurd EA (1968) Growth of roots of seven varieties of spring wheat at high and low moisture levels. Agron J 60:201–205. doi: 10.2134/agronj1968.00021962006000020018x CrossRefGoogle Scholar
  38. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. doi: 10.1007/BF00333714 CrossRefGoogle Scholar
  39. Kendall WA, Pederson GA, Hill RR (1982) Root size estimates of red clover and alfalfa based on electrical capacitance and root diameter measurements. Grass Forage Sci 37:253–256. doi: 10.1111/j.1365-2494.1982.tb01604.x CrossRefGoogle Scholar
  40. Kirkegaard JA, So HB, Troedson RJ (1992) The effect of soil strength on the growth of pigeonpea radicles and seedlings. Plant Soil 140:65–74. doi: 10.1007/BF00012808 CrossRefGoogle Scholar
  41. Klepper B, Belford RK, Rickman RW (1984) Root and shoot development in winter wheat. Agron J 76:117–122. doi: 10.2134/agronj1984.00021962007600010029x CrossRefGoogle Scholar
  42. Lancashire PD, Bleiholder H, Boom TVD, Langelüddecke P, Stauss R, Weber E, Witzenberger A (1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601. doi: 10.1111/j.1744-7348.1991.tb04895.x CrossRefGoogle Scholar
  43. Levitt J (1980) Responses of plants to environmental stresses. Academic Press, New YorkGoogle Scholar
  44. Lobet G, Draye X (2013) Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems. Plant Methods 9:1. doi: 10.1186/1746-4811-9-1 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Løes AK, Gahoonia T (2004) Genetic variation in specific root length in Scandinavian wheat and barley accessions. Euphytica 137:243–249. doi: 10.1023/B:EUPH.0000041587.02009.2e CrossRefGoogle Scholar
  46. Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153. doi: 10.1016/s0065-2113(08)60477-0 CrossRefGoogle Scholar
  47. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13PubMedCentralPubMedGoogle Scholar
  48. Lynch JP (2007) Turner review no. 14. Roots of the second green revolution. Aust J Bot 55:493–512. doi: 10.1071/BT06118 CrossRefGoogle Scholar
  49. Manschadi AM, Christopher J, deVoil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837. doi: 10.1071/FP06055 CrossRefGoogle Scholar
  50. Manschadi AM, Hammer GL, Christopher JT, DeVoil P (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129. doi: 10.1007/s11104-007-9492-1 CrossRefGoogle Scholar
  51. Manschadi AM, Manske GGB, Vlek PLG (2013) Root architecture and resource acquisition: Wheat as a model plant. In: Eshel A, Beeckman T (eds) Plant roots. The hidden half, 4th edn. CRC Press, Boca Raton, pp 22/1–22/18. doi: 10.1201/b14550-27 Google Scholar
  52. Manske GGB, Ortiz-Monasterio JI, van Ginkel M, González RM, Rajaram S, Molina E, Vlek PLG (2000) Traits associated with improved P-uptake efficiency in CIMMYT’s semidwarf spring bread wheat grown on an acid andisol in Mexico. Plant Soil 221:189–204. doi: 10.1023/A:1004727201568 CrossRefGoogle Scholar
  53. Materechera SA, Dexter AR, Alston AM (1991) Penetration of very strong soils by seedling roots of different plant species. Plant Soil 135:31–41. doi: 10.1007/BF00014776 CrossRefGoogle Scholar
  54. McBride R, Candido M, Ferguson J (2008) Estimating root mass in maize genotypes using the electrical capacitance method. Arch Agron Soil Sci 54:215–226. doi: 10.1080/03650340701790658 CrossRefGoogle Scholar
  55. Muir W, Nyquist WE, Xu S (1992) Alternative partitioning of the genotype-by-environment interaction. Theor Appl Genet 84:193–200. doi: 10.1007/BF00224000 PubMedCrossRefGoogle Scholar
  56. Nicotra AB, Davidson A (2010) Adaptive phenotypic plasticity and plant water use. Funct Plant Biol 37:117–127. doi: 10.1071/FP09139 CrossRefGoogle Scholar
  57. Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442. doi: 10.1080/11263500701626069 CrossRefGoogle Scholar
  58. Oyanagi A (1994) Gravitropic response growth angle and vertical distribution of roots of wheat (Triticum aestivum L.). Plant Soil 165:323–326. doi: 10.1007/BF00008076 CrossRefGoogle Scholar
  59. Ozier-Lafontaine H, Bajazet T (2005) Analysis of root growth by impedance spectroscopy (EIS). Plant Soil 277:299–313. doi: 10.1007/s11104-005-7531-3 CrossRefGoogle Scholar
  60. Palta JA, Gregory PJ (1997) Drought affects the fluxes of carbon to roots and soil in 13C pulse-labelled plants of wheat. Soil Biol Biochem 29:1395–1403. doi: 10.1016/S0038-0717(97)00050-3 CrossRefGoogle Scholar
  61. Palta JA, Chen X, Milroy SP, Rebetzke GJ, Dreccer MF, Watt M (2011) Large root systems: are they useful in adapting wheat to dry environments? Funct Plant Biol 38:347–354. doi: 10.1071/FP11031 CrossRefGoogle Scholar
  62. Passioura JB (1983) Roots and drought resistance. Agric Water Manag 7:265–280. doi: 10.1016/0378-3774(83)90089-6 CrossRefGoogle Scholar
  63. Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607. doi: 10.1071/PP99173_CO (published erratum Aust J Plant Physiol 27:1191)CrossRefGoogle Scholar
  64. Price AH, Tomos AD, Virk DS (1997) Genetic dissection of root growth in rice (Oryza sativa L.). I: a hydrophonic screen. Theor Appl Genet 95:132–142. doi: 10.1007/s001220050541 CrossRefGoogle Scholar
  65. Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186. doi: 10.1093/jxb/erl250 PubMedCrossRefGoogle Scholar
  66. Richards RA (2006) Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric Water Manag 80:197–211. doi: 10.1016/j.agwat.2005.07.013 CrossRefGoogle Scholar
  67. Richards RA (2008) Genetic opportunities to improve cereal root systems for dryland agriculture. Plant Prod Sci 11:12–16. doi: 10.1626/pps.11.12 CrossRefGoogle Scholar
  68. Richards RA, Passioura JB (1981a) Seminal root morphology and water use of wheat. I. Environmental effects. Crop Sci 21:249–252. doi: 10.2135/cropsci1981.0011183X002100020011x CrossRefGoogle Scholar
  69. Richards RA, Passioura JB (1981b) Seminal root morphology and water use of wheat. II. Genetic variation. Crop Sci 21:253–255. doi: 10.2135/cropsci1981.0011183X002100020012x CrossRefGoogle Scholar
  70. Richards RA, Passioura JB (1989) A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust J Agric Res 40:943–950. doi: 10.1071/AR9890943 CrossRefGoogle Scholar
  71. Richards RA, Watt M, Rebetzke GJ (2007) Physiological traits and cereal germplasm for sustainable agricultural systems. Euphytica 154:409–425. doi: 10.1007/s10681-006-9286-1 CrossRefGoogle Scholar
  72. Rubel F, Kottek M (2010) Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z 19:135–141. doi: 10.1127/0941-2948/2010/0430 CrossRefGoogle Scholar
  73. Ryser P (2006) The mysterious root length. Plant Soil 286:1–6. doi: 10.1007/s11104-006-9096-1 CrossRefGoogle Scholar
  74. Schröder T, Javaux M, Vanderborght J, Körfgen B, Vereecken H (2008) Effect of local soil hydraulic conductivity drop using a three-dimensional root water uptake model. Vadose Zone J 7:1089–1098. doi: 10.2136/vzj2007.0114 CrossRefGoogle Scholar
  75. Silva CR, Andrade Júnior AS, Alves Júnior J, Souza AB, Melo FB, Coelho Filho MA (2007) Calibration of a capacitance probe in a Paleudult. Sci Agric 64:636–640. doi: 10.1590/S0103-90162007000600012 CrossRefGoogle Scholar
  76. Stetson DL, Sullivan WL (1998) Seasonal variation in root growth of three grass species under varying cutting treatments. In: Box J (ed) Root demographics and their efficiencies in sustainable agriculture, grasslands and forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp 223–235. doi: 10.1007/978-94-011-5270-9_18 CrossRefGoogle Scholar
  77. Středa T, Dostál V, Horáková V, Chloupek O (2012) Effective use of water by wheat varieties with different root system sizes in rain-fed experiments in Central Europe. Agric Water Manag 104:203–209. doi: 10.1016/j.agwat.2011.12.018 CrossRefGoogle Scholar
  78. Tsukahara K, Yamane K, Yamaki Y, Honjo H (2009) A nondestructive method for estimating the root mass of young peach trees after root pruning using electrical capacitance measurements. J Agric Meteorol 65:209–213. doi: 10.2480/agrmet.65.2.6 CrossRefGoogle Scholar
  79. Van Ginkel M, Calhoun DS, Gebeyehu G, Miranda A, Tian-you C, Lara RP, Trethowan RM, Sayre K, Crossa J, Rajaram S (1998) Plant traits related to yield of wheat in early, late, or continuous drought conditions. Euphytica 100:109–121. doi: 10.1023/A:1018364208370 CrossRefGoogle Scholar
  80. Wahl S, Ryser P (2000) Root tissue structure is linked to ecological strategies of grasses. New Phytol 148:459–471. doi: 10.1046/j.1469-8137.2000.00775.x CrossRefGoogle Scholar
  81. Waines JG, Ehdaie B (2007) Domestication and crop physiology: roots of green-revolution wheat. Ann Bot 100:991–998. doi: 10.1093/aob/mcm180 PubMedCentralPubMedCrossRefGoogle Scholar
  82. Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SVS, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498. doi: 10.1093/jxb/ers111 PubMedCrossRefGoogle Scholar
  83. Watt M, Magee LJ, McCully ME (2008) Types, structure and potential for axial water flow in the deepest roots of field-grown cereals. New Phytol 178:135–146. doi: 10.1111/j.1469-8137.2007.02358.x PubMedCrossRefGoogle Scholar
  84. Wojciechowski T, Gooding MJ, Ramsay L, Gregory PJ (2009) The effects of dwarfing genes on seedling root growth of wheat. J Exp Bot 60:2565–2573. doi: 10.1093/jxb/erp107 PubMedCentralPubMedCrossRefGoogle Scholar
  85. Zobel RW, Waisel Y (2010) A plant root system architectural taxonomy: a framework for root nomenclature. Plant Biosyst 144:507–512. doi: 10.1080/11263501003764483 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alireza Nakhforoosh
    • 1
  • Heinrich Grausgruber
    • 1
  • Hans-Peter Kaul
    • 1
  • Gernot Bodner
    • 1
  1. 1.Department of Crop SciencesBOKU-University of Natural Resources and Life Sciences, ViennaTullnAustria

Personalised recommendations