Advertisement

Plant and Soil

, Volume 379, Issue 1–2, pp 325–335 | Cite as

Biological nitrification inhibition in sorghum: the role of sorgoleone production

  • Tsehaye Tesfamariam
  • H. Yoshinaga
  • S. P. Deshpande
  • P. Srinivasa Rao
  • K. L. Sahrawat
  • Y. Ando
  • K. Nakahara
  • C. T. Hash
  • G. V. SubbaraoEmail author
Regular Article

Abstract

Background and aims

Nitrification and denitrification are the two most important processes that contribute to greenhouse gas emission and inefficient use of nitrogen. Suppressing soil nitrification through the release of nitrification inhibitors from roots is a plant function, and termed “Biological Nitrification Inhibition (BNI)”. We report here the role and contribution of sorgoleone release to sorghum-BNI function.

Methods

Three sorghum genotypes (Hybridsorgo, IS41245 and GDLP 34-5-5-3) were evaluated for their capacity to release sorgoleone, which has BNI-activity, in hydroponic and soil culture. Sorgoleone released was measured using HPLC; BNI-activity was determined using a luminescent recombinant Nitrosomonas europaea assay.

Results

Sorgoleone production and BNI-activity release by roots are closely associated (1 μg of sorgoleone is equivalent to 1 ATU activity in assay). Purified sorgoleone inhibited Nitrosomonas activity and suppressed soil nitrification. Sorghum genotypes release varying quantity of sorgoleone; GDLP 34-5-5-3 and Hybridsorgo showed higher capacity for both sorgoleone release and BNI-activity than did IS41245. In soil culture, GDLP 34-5-5-3 released higher quantity of sorgoleone into the rhizosphere, which had higher BNI-activity, and suppressed soil nitrification to a greater extent than did by IS41245.

Conclusions

These results demonstrate genetic differences for sorgoleone release and its functional link with BNI-capacity; there is potential for genetic improvement of sorghum BNI-capacity and deployment of this in low-nitrifying sorghum production systems.

Keywords

Biological nitrification inhibition (BNI) BNI-capacity Genotypic variation Hydrophobic-BNIs Nitrification inhibition Sorghum Sorgoleone 

Notes

Acknowledgments

This research work was supported by JIRCAS fellowship program 2011. This work has been undertaken as part of the CGIAR Research Program on Dryland Cereals.

References

  1. Allison FE (1966) The fate of nitrogen applied to soils. Adv Agron 18:219–258CrossRefGoogle Scholar
  2. Alsaadawi IS, Al-Uqaili JK, Alrubeaa AJ, Al-Hadithy SM (1985) Allelopathic suppression of weed and nitrification by selected cultivars of Sorghum bicolor(L.)Moench. J Chem Ecol 12:209–218CrossRefGoogle Scholar
  3. Anon (1974) Technicon autoanalyzer II. Technicon Industrial Systems, TarrytownGoogle Scholar
  4. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83CrossRefGoogle Scholar
  5. Bremner JM, Blackmer AM (1978) Nitrous oxide: emission from soils during nitrification and denitrification of fertilizer nitrogen. Science 199:295–296PubMedCrossRefGoogle Scholar
  6. Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J et al (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonaseuropaea. J Bacteriol 185:2759–2773PubMedCentralPubMedCrossRefGoogle Scholar
  7. Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Leslie A, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825CrossRefGoogle Scholar
  8. Czarnota MA, Rimando AM, Weston LA (2003) Evaluation of seven sorghum (Sorghum sp.) accessions. J Chem Ecol 29:2073–2083PubMedCrossRefGoogle Scholar
  9. Dayan FE (2006) Factors modulating the levels of the allelo-chemical sorgoleone in Sorghum bicolor. Planta 224:339–346PubMedCrossRefGoogle Scholar
  10. Dayan FE, Howell J, Weidenhamer JD (2009) Dynamic root exudation of sorgoleone and its in plant mechanism of action. J Exp Bot 60:2107–2117PubMedCentralPubMedCrossRefGoogle Scholar
  11. Gimsing AL, Baelum J, Dayan FE, Locke M, Sejero LH, Jacobsen CS (2009) Mineralization of the allelochemical sorgoleone in soil. Chemosphere 76:1041–1047PubMedCrossRefGoogle Scholar
  12. Hadas A, Hadas A, Sagiv B, Haruvy N (1999) Agricultural practices, soil fertility management modes and resultant nitrogen leaching rates under semi-arid conditions. Agric Water Manag 42:81–95CrossRefGoogle Scholar
  13. Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54:33–45CrossRefGoogle Scholar
  14. Hejl AM, Koster KL (2004) The allelochemical sorgoleone inhibits root H+-ATPase and water uptake. J Chem Ecol 30:2181–2191CrossRefGoogle Scholar
  15. Hofstra N, Bouwman AF (2005) Denitrification in agricultural soils: summarizing published data and estimating global annual rates. Nutr Cycl Agroecosyst 72:267–278CrossRefGoogle Scholar
  16. Ishikawa T, Subbarao GV, Ito O, Okada K (2003) Suppression of nitrification and nitrous oxide emission by the tropical grass Brachiaria humidicola. Plant Soil 255:413–419CrossRefGoogle Scholar
  17. Jones N (2013) Grass gets greener. Nature 501:291PubMedCrossRefGoogle Scholar
  18. Klotz MG, Arp DJ, Chain PS, El-Sheikh AF, Hauser LJ, Hommes NG, Larimer FW, Malfatti SA, Norton JM, Poret-Peterson AT et al (2006) Complete genome sequence of the marine, chemolitho-autotrophic, ammonia oxidizing bacterium Nitrosococcusoceani ATCC 19707. Appl Environ Microbiol 72:6299–6315PubMedCentralPubMedCrossRefGoogle Scholar
  19. Lata JC, Durand J, Lensi R, Abbadie L (1999) Stable coexistence of contrasted nitrification statuses in a wet tropical savanna system. Fun Ecol 13:762–763CrossRefGoogle Scholar
  20. Lata JC, Degrange V, Raynaud X, Maron PA, Lensi R, Abbadie L (2004) Grass populations control nitrification in savanna soils. Fun Ecol 18:605–611CrossRefGoogle Scholar
  21. Moore DRE, Waid JS (1971) The influence of washing of living roots on nitrification. Soil Biol Biochem 3:69–83CrossRefGoogle Scholar
  22. Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K (1996) Nitrous oxide emissions from agricultural fields: assessment, measurement, and mitigation. Plant Soil 181:95–108CrossRefGoogle Scholar
  23. Netzly DH, Butler LG (1986) Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci 26:775–778CrossRefGoogle Scholar
  24. Nimbal CI, Pedersen JF, Yerkes CN, Weston LA, Weller SC (1996a) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J Agric Food Chem 44:1343–1347CrossRefGoogle Scholar
  25. Nimbal CI, Yerkes CN, Weston LA, Weller SC (1996b) Herbicidal activity and site of action of the natural product sorgoleone. Pestic Biochem Physiol 54:73–83CrossRefGoogle Scholar
  26. Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363Google Scholar
  27. Schlesinger WH (2009) On the fate of anthropogenic nitrogen. PNAS (USA) 106:203–208CrossRefGoogle Scholar
  28. Shen JP, Zhang LM, Di HJ, He JZ (2012) A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front Microbiol 3:1–7Google Scholar
  29. Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology, and production. Wiley, New YorkGoogle Scholar
  30. Smith KA, McTaggart IP, Tsuruta H (1997) Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture and the potential for mitigation. Soil Use Manag 13:296–304CrossRefGoogle Scholar
  31. Starkenburg SR, Chain PS, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW, Malfatti SA, Klotz MG, Bottomley PJ, Arp DJ et al (2006) Genome sequence of the chemo-litho autotrophic nitrite-oxidizing bacterium Nitrobacterwinogradskyi Nb-255. Appl Environ Microbiol 72:2050–2063PubMedCentralPubMedCrossRefGoogle Scholar
  32. Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL (2006) A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101–112CrossRefGoogle Scholar
  33. Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL (2007a) Biological nitrification inhibition (BNI) - is it a widespread phenomenon? Plant Soil 294:5–18CrossRefGoogle Scholar
  34. Subbarao GV, Wang HY, Ito O, Nakahara K, Berry WL (2007b) NH4 + triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant Soil 290:245–257CrossRefGoogle Scholar
  35. Subbarao GV, Nakahara K, Ishikawa T, Yoshihashi T, Ito O, Ono H, Ohnishi-Kameyama M, Yoshida M, Kawano N, Berry WL (2008) Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Plant Soil 313:89–99CrossRefGoogle Scholar
  36. Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. PNAS (USA) 106:17302–17307CrossRefGoogle Scholar
  37. Subbarao GV, Nakahara K, Ishikawa T, Ono H, Yoshida M, Yoshihashi T, Zhu Y, Zakir HAKM, Deshpande SP et al (2013a) Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 366:243–259CrossRefGoogle Scholar
  38. Subbarao GV, Sahrawat KL, Nakahara K, Rao IM, Ishitani M, Hash CT, Kishii M, Bonnett DG, Berry WL, Lata JC (2013b) A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Ann Bot 112:297–316PubMedCrossRefGoogle Scholar
  39. Subudhi PK, Nguyen HT (2000) Linkage group alignment of sorghum RFLP maps using a RIL mapping population. Genome 43:240–249PubMedCrossRefGoogle Scholar
  40. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Env Microbiol 7:1985–1995CrossRefGoogle Scholar
  41. Uddin MR, Park KW, Kim YK, Park SU, Pyon JY (2010) Enhancing sorgoleone levels in grain sorghum root exudates. J Chem Ecol 36:914–922PubMedCrossRefGoogle Scholar
  42. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir A, Hemp J, Huegler M, Karr EA, Koenneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 107(19):8818–8823Google Scholar
  43. Weston LA (1996) Utilization of allelopathy for weed management in agroecosystems. Agron J 88:860–866Google Scholar
  44. Yang X, Owens TG, Scheffler BE, Weston LA (2004) Manipulation of root hair development and sorgoleone production in sorghum seedlings. J Chem Ecol 30:199–213PubMedCrossRefGoogle Scholar
  45. Zakir H, Subbarao GV, Pearse SJ et al (2008) Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol 180:442–451PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tsehaye Tesfamariam
    • 1
  • H. Yoshinaga
    • 1
  • S. P. Deshpande
    • 2
  • P. Srinivasa Rao
    • 2
  • K. L. Sahrawat
    • 2
  • Y. Ando
    • 1
  • K. Nakahara
    • 1
  • C. T. Hash
    • 3
  • G. V. Subbarao
    • 1
    Email author
  1. 1.Crop, Livestock & Environment, JIRCASTsukubaJapan
  2. 2.Sorghum Breeding, International Crops Research Institute for Semi-Arid Tropics (ICRISAT)HyderabadIndia
  3. 3.ICRISAT Sahelian CenterNiameyNiger

Personalised recommendations