Plant and Soil

, Volume 379, Issue 1–2, pp 261–274 | Cite as

The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission

  • Hexon Angel Contreras-Cornejo
  • Lourdes Macías-Rodríguez
  • Alfredo Herrera-Estrella
  • José López-Bucio
Regular Article



This work was conducted to examine the effects of volatile organic compounds (VOCs) from Trichoderma virens and the 4-phosphopantetheinyl transferase 1 (TvPPT1) mutant in growth promotion and induction of defense responses of Arabidopsis thaliana seedlings using a co-cultivation system in vitro.


The contribution of VOCs to plant development and immunity was assessed by comparing the effectiveness of WT and Δppt1 mutant strains of T. virens in the formation of lateral roots and protection conferred against Botrytis cinerea. VOCs released by T. virens and Δppt1 mutant were compared by gas chromatography–mass spectrometry.


Plants exposed to volatiles from WT T. virens showed 2-fold increase in fresh weight when compared to axenically-grown seedlings, which correlated with increased root branching and enhanced expression of the jasmonic acid-responsive marker pLox2:uidA as well as accumulation of jasmonic acid and hydrogen peroxide. T. virens produced a series of hydrocarbon terpenes, including the sesquiterpenes β-caryophyllene, (−)-β-elemene, germacrene D, τ-cadinene, δ-cadinene, α-amorphene, and τ-selinene and the monoterpenes β-myrcene, trans-β-ocimene, and cis-β-ocimene that were absent in TvPPT1 mutant.


Our results indicate that T. virens VOCs elicit both development and defense programs and that PPT1 plays an important role in biosynthesis of terpenes and plant protection against B. cinerea.


Trichoderma Arabidopsis Root development Plant immunity Volatiles 



Farnesyl pyrophosphate


Gas chromatography-selected ion monitoring mass spectrometry


Jasmonic acid


Mevalonic acid


2-C-methyl-D-erythritol 4-phosphate


Nonribosomal peptide synthase


Orto-anisic acid


Poliketide synthase




4-phosphopantetheinyl transferase 1


Reactive oxygen species


Salicylic acid


Volatile organic compounds



This work was supported by grants from the Consejo Nacional de Ciencia y Tecnología (CONACYT, México, grants no. 165738 and 177775), the Consejo de la Investigación Científica (UMSNH, México, grants no. CIC 2.24 and 2.26) and the Marcos Moshinsky Foundation. HACC is indebted to CONACYT for a doctoral fellowship.

Supplementary material

11104_2014_2069_MOESM1_ESM.docx (16 kb)
Supplementary Table 1(DOCX 16 kb)
11104_2014_2069_MOESM2_ESM.doc (60 kb)
Supplementary Table 2(DOC 60 kb)
11104_2014_2069_MOESM3_ESM.jpg (4.7 mb)
Supplementary Fig. S1Effect of T. virens WT and Δppt1-1 VOCs on induction of plant immunity. (a-h) Analysis of expression of the JA responsive gene marker pLox2:uidA and the SA responsive gene marker pPr-1a:uidA. GUS expression in Arabidopsis seedlings was determined after 5-days of co-cultivation with T. virens. Photographs show representative individuals of at least 10 stained seedlings. The experiment was repeated three times with similar results. (JPEG 4824 kb)


  1. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal tranduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  2. Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058PubMedCrossRefGoogle Scholar
  3. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592PubMedCentralPubMedCrossRefGoogle Scholar
  4. Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungus Botrytis cinerea. Plant Signal Behav 6:1554–1563PubMedCentralPubMedCrossRefGoogle Scholar
  5. Croft K, Juttner F, Slusarenko AJ (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol 101:13–24PubMedCentralPubMedGoogle Scholar
  6. Crutcher FK, Parich A, Schuhmacher R, Mukherjee PS, Zeilinger S, Kenerley CM (2013) A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genet Biol 56:67–77PubMedCrossRefGoogle Scholar
  7. Diaz M, Achkor H, Titarenko E, Martinez MC (2003) The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Lett 543:136–139PubMedCrossRefGoogle Scholar
  8. Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511PubMedCentralPubMedCrossRefGoogle Scholar
  9. Dixon RA, Harrison M, Lamb CJ (1994) Early events in the activation of plant defense responses. Annu Rev Phytopathol 32:479–501CrossRefGoogle Scholar
  10. El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K (2011) Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405–2421PubMedCentralPubMedCrossRefGoogle Scholar
  11. Ellis C, Karafyllidis I, Turner JG (2002) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant-Microbe Interact 15:1025–1030PubMedCrossRefGoogle Scholar
  12. Fidantsef AL, Stout MJ, Thaler JS, Duffey SS, Bostock RM (1999) Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato Lycopersicon esculentum. Physiol Mol Plant Pathol 54:97–114CrossRefGoogle Scholar
  13. García-Pineda E, Benezer-Benezer M, Gutierrez-Segundo A, Rangel-Sánchez G, Arreola-Cortés A, Castro-Mercado E (2010) Regulation of defence reponses in avocado roots infected with Phytophtora cinnamomi (Rands). Plant Soil 331:45–56CrossRefGoogle Scholar
  14. Godard K, White R, Bohlmann J (2008) Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 69:1838–1849PubMedCrossRefGoogle Scholar
  15. Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, Reyes-de la Cruz H, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83CrossRefGoogle Scholar
  16. Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25PubMedCrossRefGoogle Scholar
  17. Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26CrossRefGoogle Scholar
  18. Jensen AB, Raventos D, Mundy J (2002) Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis. Plant J 29:595–606PubMedCrossRefGoogle Scholar
  19. Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles – An effect of CO2? FEBS Lett 583:3473–3477PubMedCrossRefGoogle Scholar
  20. Kaiser R (2006) Flowers and fungi use scents to mimic each other. Science 311:806–807PubMedCrossRefGoogle Scholar
  21. Kauss H, Fauth M, Merten A, Jeblick W (1999) Cucumber hypocotyls respond to cutin monomers via both inducible and a constitutive H2O2-generating system. Plant Physiol 120:1175–1182PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kramer R, Abraham WR (2011) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37CrossRefGoogle Scholar
  23. Liechti R, Farmer EE (2002) The jasmonate pathway. Science 296:1649–1650PubMedCrossRefGoogle Scholar
  24. López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact 20:207–217PubMedCrossRefGoogle Scholar
  25. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44PubMedGoogle Scholar
  26. Márquez-Fernández O, Trigos A, Ramos-Balderas JL, Viniegra-González G, Deising HB, Aguirre J (2007) Phosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development. Eukaryot Cell 6:710–720PubMedCentralPubMedCrossRefGoogle Scholar
  27. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811PubMedCentralPubMedCrossRefGoogle Scholar
  28. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123CrossRefGoogle Scholar
  29. Rohloff J, Bones AM (2005) Volatile profiling of Arabidopsis thaliana-putative olfactory compounds in plant communication. Phytochemistry 66:1941–1955PubMedCrossRefGoogle Scholar
  30. Rolf K, Wolf-Rainer A (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37CrossRefGoogle Scholar
  31. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932PubMedCentralPubMedCrossRefGoogle Scholar
  32. Ryu CM, Farag MA, Hu C, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026PubMedCentralPubMedCrossRefGoogle Scholar
  33. Schmelz EA, Alborn HT, Tumlinson JH (2001) The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta 214:171–179PubMedCrossRefGoogle Scholar
  34. Schommer C, Palatnik J, Aggarwal P, Chetelat A, Cubas P, Farmer E, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:1991–2001CrossRefGoogle Scholar
  35. Shah J, Tsui F, Klessing DF (1997) Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant-Microbe Interact 10:69–78PubMedCrossRefGoogle Scholar
  36. Shetty NP, Jørgensen HJ, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280CrossRefGoogle Scholar
  37. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:1–23CrossRefGoogle Scholar
  38. Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193PubMedCrossRefGoogle Scholar
  39. Strobel G, Singh SK, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94PubMedCrossRefGoogle Scholar
  40. Svalheim O, Robertsen B (1990) Induction of peroxidase in cucumber hypocotyls by wounding and fungal infection. Physiol Plant 78:261–267CrossRefGoogle Scholar
  41. Tamogami S, Noge K, Abe M, Agrawal GK, Rakwal R (2013) Deuterium labeling for investigating de novo synthesis of terpene volatiles in Achyranthes bidentata. Biotechnol Lett 35:1247–1252PubMedCrossRefGoogle Scholar
  42. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:1–8CrossRefGoogle Scholar
  43. Velázquez-Robledo R, Contreras-Cornejo HA, Macías-Rodríguez L, Hernández- Morales A, Aguirre J, Casas-Flores S, López-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism, and induction of plant defense responses. Mol Plant-Microbe Interact 24:1459–1471PubMedCrossRefGoogle Scholar
  44. Vinale F, Sivasithamparam K, Ghisalberti E, Marra R, Barbetti M, Li H, Woo S, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86CrossRefGoogle Scholar
  45. Weidhase RA, Kramell HM, Lehmann J, Liebisch HW, Lerbs W, Parthier B (1987) Methyl jasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci 51:177–186CrossRefGoogle Scholar
  46. Wheatley R, Hackett C, Bruce A, Kundzewiczd A (1997) Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int Biodeterior Biodegrad 39:199–205CrossRefGoogle Scholar
  47. Wiemann P, Albermann S, Niehaus EM, Studt L, von Bargen KW, Brock NL, Humpf HU, Dickschat JS, Tudzynski B (2012) The Sfp-type 4-phosphopantetheinyl transferase Ppt1 of Fusarium fujikuroi controls development, secondary metabolism and pathogenicity. PLoS ONE 7:e37519PubMedCentralPubMedCrossRefGoogle Scholar
  48. Wu C, Chien S, Wang S, Kuo Y, Chang S (2005) Structure-activity relationships of cadinene-type sesquiterpene derivatives against wood-decay fungi. Holzforschung 59:620–627CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hexon Angel Contreras-Cornejo
    • 1
  • Lourdes Macías-Rodríguez
    • 1
  • Alfredo Herrera-Estrella
    • 2
  • José López-Bucio
    • 1
  1. 1.Instituto de Investigaciones Químico-BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV IrapuatoIrapuatoMexico

Personalised recommendations