Plant and Soil

, Volume 379, Issue 1–2, pp 205–216 | Cite as

Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil

  • Lydie-Stella KoutikaEmail author
  • Daniel Epron
  • Jean-Pierre Bouillet
  • Louis Mareschal
Regular Article


Background and aims

The introduction of Acacia mangium in Eucalyptus urophylla x grandis stands improves wood production on poor sandy soils of coastal plains of the Congo. We assessed the impact of A. mangium plantations in pure stands and in mixture with eucalypt trees on the physico-chemical properties of the soil after one rotation.


Bulk densities, N, C, available P and pH were determined on soil sampled in the pure acacia (100A), pure eucalypt (100E) and mixed-species (50A:50E) stands. N and P were determined in aboveground litters and in leaves, bark and wood of trees.


N and C concentrations were higher in 50A:50E than in 100A and 100E in the top soil layer. The pH was lower in 100A and higher in 100E than in 50A:50E. The available P was lower in 50A:50E than in 100A and 100E. Leaf N was lower in 50A:50E than in 100A for acacia, and higher than in 100E for eucalypt. Leaf P was similar for acacia but higher for eucalypt in 50A:50E than in 100E. In contrast to P, the amount of N in aboveground litterfall increased with the proportion of acacia in the stand.


The introduction of acacia trees in eucalypt plantations increased C and N contents of the soil but decreased the available P content in the mixed-species stand. This may be related to a higher uptake of P needed to maintain the N:P stoichiometry in eucalypt leaves.


Acacia mangium Soil pH Available P, C and N concentrations Eucalyptus 



Soil organic matter








Nitrogen fixing species



The authors thank Drs J. Ranger and L. Saint-André (INRA, Nancy, France) for allowing P extraction in their Laboratory (CIRAD Grant AI11), Agnès Martin (CIRAD, Montpellier, France) for the soil P analyses, A. Diamesso (CRDPI, Congo) for his help in pH measurements, S. Meziane and D. Gérant for the leaf and litter P analyses, and Prof. Tim Crews (Prescott College, US) for his advices in the earlier stage of the manuscript. C and N analyses were done by the Plateforme d’Ecologie Fonctionnelle of UMR EEF in Nancy. Financial supports were provided by the Intens&fix Project (ANR-2010-STRA-004-03), the EU – funded ClimaAfrica project (7th Framework Program) and the “Observatoires de Recherche en Environnement sur le Fonctionnement des Écosystèmes Forestiers” (SOERE F-ORE-T, GIP ECOFOR). The UMR EEF is supported by the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-12- LABXARBRE-01).


  1. Bernhard-Reversat F (1996) Nitrogen cycling in tree plantations grown on a poor sandy savanna soil in Congo. Appl Soil Ecol 4:161–172CrossRefGoogle Scholar
  2. Bernhard-Reversat F, Diangana D, Tsatsa M (1993) Biomasse, minéralomasse et productivité en plantation d’Acacia mangium et A. auriculiformis au Congo. Bois et forêts des tropiques 238:35–44Google Scholar
  3. Binkley D (1992) Mixtures of N2-fixing and non-N2-fixing tree species. In: Cannell MGR, Malcom DC, Robertson PA (eds) The ecology of mixed-species stands of trees. Blackwell Scientific Publications, OxfordGoogle Scholar
  4. Binkley D, Giardina C, Bashkin MA (2000) Soil phosphorus pools and supply under the influence of Eucalyptus saligna and nitrogen-fixing Albizia facaltaria. Forest Ecol Manag 128:241–247CrossRefGoogle Scholar
  5. Bouillet J-P, Laclau J-P, Gonçalves JLM, Voigtlaender M, Gava JL, Leite FP, Hakamada R, Mareschal L, Mabiala A, Tardy F, Levillain J, Deleporte P, Epron D, Nouvellon Y (2013) Eucalyptus and Acacia tree growth over entire rotation in single- and mixed-species plantations across five sites in Brazil and Congo. Forest Ecol Manag 301:89–101CrossRefGoogle Scholar
  6. Cole TG, Yost RS, Kablan R, Olsen T (1996) Growth potential of twelve Acacia species on acid soils in Hawaii. Forest Ecol Manag 80:175–186CrossRefGoogle Scholar
  7. Criquet S, Ferre E, Farnet AM, Le Petit J (2004) Annual dynamics of phosphatase activities in an evergreen oak litter: influence of biotic and abiotic factors. Soil Biol Biochem 36:1111–1118CrossRefGoogle Scholar
  8. d’Annunzio R, Conche S, Landais D, Saint-Andre L, Joffre R, Barthes BG (2008) Pairwise comparison of soil organic particle-size distributions in native savannas and Eucalyptus plantations in Congo. Forest Ecol Manag 255:1050–1056CrossRefGoogle Scholar
  9. Epron D, Marsden C, Thongo M, Bou A, Saint-André L, d’Annunzio R, Nouvellon Y (2009) Soil carbon dynamics following afforestation of a tropical savannah with Eucalyptus in Congo. Plant Soil 323:309–322CrossRefGoogle Scholar
  10. Epron D, Nouvellon Y, Mareschal L, Moreira RM, Koutika L-S, Geneste B, Delgado-Rojas JS, Laclau J-P, Sola G, Gonçalves JLM, Bouillet J-P (2013) Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: two case-studies in contrasting tropical environments. Forest Ecol Manag 301:102–111CrossRefGoogle Scholar
  11. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843CrossRefGoogle Scholar
  12. Fontaine S, Bardoux G, Benest D, Verdier B, Mariotti A, Abbadie L (2004) Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil Sci Soc Am J 68:125–131CrossRefGoogle Scholar
  13. Forrester DI, Bauhus J, Cowie AL (2005) Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Can J For Res 35:2942–2950CrossRefGoogle Scholar
  14. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review. Forest Ecol Manag 233:211–230CrossRefGoogle Scholar
  15. Forrester DI, Pares A, O’Hara C, Khanna PK, Bauhus J (2013) Soil organic carbon is increased in mixed-species plantations of Eucalyptus and nitrogen-fixing Acacia. Ecosystems 16:123–132CrossRefGoogle Scholar
  16. Gunes A, Inal A, Cicek N, Eraslan F (2007) Role of phosphatases, iron reducing, and solubilizing activity on the nutrient acquisition in mixed cropped peanut and barley. J Plant Nut 30:1555–1568CrossRefGoogle Scholar
  17. Hagos MG, Smit GN (2005) Soil enrichment by Acacia mellifera subsp. detinens on nutrient poor sandy soil in a semi-arid southern African savanna. J Arid Environ 61:47–59CrossRefGoogle Scholar
  18. Hattenschwiler S, Aeschlimann B, Couteaux M-M, Roy J, Bonal D (2008) High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–175PubMedCrossRefGoogle Scholar
  19. Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59CrossRefGoogle Scholar
  20. Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086PubMedCentralPubMedCrossRefGoogle Scholar
  21. Inagaki M, Kamo K, Miyamoto K, Titin J, Jamalung L, Lapongan J, Miura S (2011) Nitrogen and phosphorus retranslocation and N:P ratios of litterfall in three tropical plantations: luxurious N and efficient P use by Acacia mangium. Plant Soil 341:295–307CrossRefGoogle Scholar
  22. Kasongo RK, Van Ranst E, Verdoodt A, Kanyankagote P, Baert G (2009) Impact of Acacia auriculiformis on the chemical fertility of sandy soils on the Batéké plateau, D.R. Congo. Soil Use Manag 25:21–27CrossRefGoogle Scholar
  23. Kaye JP, Resh SC, Kaye MW, Chimner RA (2000) Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia Trees. Ecology 81:3267–3273CrossRefGoogle Scholar
  24. Khanna PK (1997) Comparison of growth and nutrition of young monocultures and mixed stands of Eucalyptus globulus and Acacia mearnsii. Forest Ecol Manag 94:105–113CrossRefGoogle Scholar
  25. Khanna P (1998) Nutrient cycling under mixed-species tree systems in southeast Asia. Agrofor Syst 38:99–120CrossRefGoogle Scholar
  26. Kohler J, Caravaca F, Carrasco L, Roldan A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487CrossRefGoogle Scholar
  27. Koutika L-S, Bartoli F, Andreux F, Cerri C, Burtin G, Chone T, Philippy R (1997) Organic matter dynamics and aggregation in soils under rain forest and pastures of increasing age in the eastern Amazon Basin. Geoderma 76:87–112CrossRefGoogle Scholar
  28. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371CrossRefGoogle Scholar
  29. Laclau J-P, Ranger J, de Moraes Gonçalves JL, Maquère V, Krusche AV, M’Bou AT, Nouvellon Y, Saint-André L, Bouillet J-P, de Cassia Piccolo M, Deleporte P (2010) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations: main features shown by intensive monitoring in Congo and Brazil. Forest Ecol Manag 259:1771–1785CrossRefGoogle Scholar
  30. Li H, Shen J, Zhang F, Clairotte M, Drevon JJ, Le Cadre E, Hinsinger P (2008) Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Plant Soils 312:139–150CrossRefGoogle Scholar
  31. Li D, Niu S, Luo Y (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181PubMedCrossRefGoogle Scholar
  32. Ludwig F, de Kroon H, Berendse F, Prins HT (2004) The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecol 170:93–105CrossRefGoogle Scholar
  33. Mao R, Zeng D-H, Hu Y-L, Li L-J, Yang D (2010) Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant Soil 332:277–287CrossRefGoogle Scholar
  34. Mareschal L, Nzila JDD, Turpault MP, M’Bou AT, Mazoumbou JC, Bouillet JP, Ranger J, Laclau JP (2011) Mineralogical and physico-chemical properties of Ferralic Arenosols derived from unconsolidated Plio-Pleistocenic deposits in the coastal plains of Congo. Geoderma 162:159–170CrossRefGoogle Scholar
  35. Marra LM, Soares CRFS, De Oliveira SM, Ferreira PAA, Soares BL, de Fragas Carvalho R, de Lima JM, de Souza Moreira FM (2012) Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357:289–307CrossRefGoogle Scholar
  36. Motsara MR, Roy RN (2008) Guide to laboratory establishment for plant nutrient analysis. FAO, RomeGoogle Scholar
  37. Nottingham A, Turner B, Chamberlain P, Stott A, Tanner EJ (2012) Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility. Biogeochemistry 111:219–237CrossRefGoogle Scholar
  38. Nuruzzaman M, Lambers H, Bolland M, Veneklaas E (2006) Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. Plant Soil 281:109–120CrossRefGoogle Scholar
  39. Nzila JD, Bouillet J-P, Laclau J-P, Ranger J (2002) The effects of slash management on nutrient cycling and tree growth in Eucalyptus plantations in the Congo. Forest Ecol Manag 171:209–221CrossRefGoogle Scholar
  40. Otani T, Ae N, Tanaka H (1996) Phosphorus (P) uptake mechanisms of crops grown in soils with low P status: II. Significance of organic acids in root exudates of pigeon pea. Soil Sc Plant Nut 42:553–560CrossRefGoogle Scholar
  41. Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. Forest Ecol Manag 168:241–257CrossRefGoogle Scholar
  42. Pausch J, Zhu B, Kuzyakov Y, Cheng W (2013) Plant inter-species effects on rhizosphere priming of soil organic matter decomposition. Soil Biol Biochem 57:91–99CrossRefGoogle Scholar
  43. Qiu L, Zhang X, Cheng J, Yin X (2010) Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant Soil 332:207–217CrossRefGoogle Scholar
  44. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  45. Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231CrossRefGoogle Scholar
  46. Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870CrossRefGoogle Scholar
  47. Sanchez P, Uehara G (1980) Management considerations for acid soils high phosphorus fixation capacity. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of Phosphorus in agriculture. American Society of Agronomy, MadisonGoogle Scholar
  48. Shen J, Tang C, Rengel Z, Zhang F (2004) Root-induced acidification and excess cation uptake by N2-fixing Lupinus albus grown in phosphorus-deficient soil. Plant Soil 260:69–77CrossRefGoogle Scholar
  49. Sitters J, Edwards PJ, Venterink HO (2013) Increases of soil C, N, and P pools along an Acacia tree density gradient and their effects on trees and grasses. Ecosystems 16:347–357CrossRefGoogle Scholar
  50. Syers J, Johnston A, Curtin D (2008) Efficiency of soil and fertilizer phosphorus: reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO, RomeGoogle Scholar
  51. Tang C, Unkovich MJ, Bowden JW (1999) Factors affecting soil acidification under legumes. III. Acid production by N2-fixing legumes as influenced by nitrate supply. New Phytol 143:513–521CrossRefGoogle Scholar
  52. Tiessen H, Moir J (1993) Characterization of available P by sequential extraction. In: Carter M (ed) Soil sampling and methods of analysis. Lewis, Boca RatonGoogle Scholar
  53. Vitousek P (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65:285–298CrossRefGoogle Scholar
  54. Voigtlaender M, Laclau J-P, Gonçalves JLM, Piccolo MC, Moreira MZ, Nouvellon Y, Ranger J, Bouillet J-P (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil 352:99–111CrossRefGoogle Scholar
  55. Wang Y, Marschner P, Zhang F (2012) Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legume. Plant Soil 354:283–298CrossRefGoogle Scholar
  56. Yamashita N, Ohta S, Hardjono A (2008) Soil changes induced by Acacia mangium plantation establishment: Comparison with secondary forest and Imperata cylindrica grassland soils in South Sumatra, Indonesia. Forest Ecol Manag 254:362–370CrossRefGoogle Scholar
  57. Yuan Z, Chen HYH (2009) Global trends in senesced-leaf nitrogen and phosphorus. Glob Ecol Biogeogr 18:532–542CrossRefGoogle Scholar
  58. Zhang H, Guan D, Song M (2012) Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. Forest Ecol Manag 277:90–97CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lydie-Stella Koutika
    • 1
    Email author
  • Daniel Epron
    • 1
    • 2
    • 3
    • 4
  • Jean-Pierre Bouillet
    • 4
    • 5
  • Louis Mareschal
    • 1
    • 4
  1. 1.Centre de Recherche sur la Durabilité et la Productivité des Plantations IndustriellesPointe-NoireRépublique du Congo
  2. 2.Ecologie et Ecophysiologie Forestières, Faculté des SciencesUniversité de Lorraine, UMR 1137Vandoeuvre-les-NancyFrance
  3. 3.Centre de NancyINRA, UMR 1137ChampenouxFrance
  4. 4.CIRAD, UMR Eco&Sols, Ecologie Fonctionnelle & Biogéochimie des Sols & Agro-écosystèmesMontpellierFrance
  5. 5.USP, Universidade de São Paulo, ESALQ, Ciências FlorestaisPiracicabaBrazil

Personalised recommendations