Plant and Soil

, Volume 377, Issue 1–2, pp 369–381 | Cite as

Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress

  • Juan Sobrino-Plata
  • Dirk Meyssen
  • Ann Cuypers
  • Carolina Escobar
  • Luis E. Hernández
Regular Article



Glutathione (GSH) plays a dual role under heavy metal stress, as antioxidant metabolite and as precursor of phytochelatins (PCs). Studying the responses of the GSH metabolism to heavy metals is important to improve tolerance.


We studied the oxidative stress signature of three γ-glutamylcysteine synthetase (γECS) Arabidopsis thaliana allele mutants (rax1-1, cad2-1, and pad2-1), first enzymatic step in the GSH synthetic pathway, when treated with 10 μM Cd or Hg for 72 h.


GSH concentration was lower in the mutants (45 % rax1-1; 30 % cad2-1; and 20 % pad2-1), which was also associated with inferior translocation of Cd or Hg to shoots, than in wild type Col-0. Glutathione reductase (GR) and NADPH-oxidase activities were inhibited in roots, phytotoxic effects consistently more pronounced in the mutants, particularly in pad2-1. Non-photochemical quenching augmented with exposure time to Cd or Hg in Col-0, but not so in the γECS mutants. Mercury caused severe damage in cad2-1 and pad2-1 root proteins profile; toxic effects confirmed by GR and H+-ATPase immunodetection. PCs appeared in Col-0 roots under metal stress, and surprisingly accumulated in rax1-1. γECS immunodetection revealed its overexpression in rax1-1.


A minimum amount of GSH may be required for adequate metal tolerance, where γECS expression could compensate GSH deficiency under stress.


Arabidopsis thaliana Biothiols Cadmium γ-glutamylcysteine synthetase Glutathione Mercury Phytochelatins 



This work was funded by the Ministry of Economy and Competitivity (PROBIOMET AGL2010-15151), Fundación Ramón Areces, and Junta Comunidades Castilla-La Mancha (FITOALMA2, POII10-0087-6458). We are extremely grateful to Prof. Phil Mullineaux (University of Essex, UK) for his donation of rax1-1 mutant seeds. We thank the comments of two anonymous reviewers which allowed substantial improvement of the manuscript.

Supplementary material

11104_2013_2006_MOESM1_ESM.pdf (233 kb)
ESM 1 (PDF 232 kb)
11104_2013_2006_MOESM2_ESM.pdf (34 kb)
ESM 2 (PDF 33 kb)


  1. Arisi A-C M, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase. Phyiol Plant 109:143–149CrossRefGoogle Scholar
  2. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol 59:89–113CrossRefGoogle Scholar
  3. Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jiménez A, Kular B, Leyland N, Mejía-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bertrand M, Poirier I (2005) Photosynthetic organisms and excess of metals. Photosynthetica 43:345–353CrossRefGoogle Scholar
  5. Berzas JL, Garcia LF, Rodriguez R (2003) Distribution of mercury in the aquatic environment at Almadén, Spain. Environ Pollut 122:261–271CrossRefGoogle Scholar
  6. Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira JG, Battisti V, Redin M, Linares CE, Dressler VL, de Moraes Flores EM, Nicoloso FT, Morsch VM, Schetinger MR (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006PubMedCrossRefGoogle Scholar
  7. Carrasco-Gil S, Álvarez-Fernández A, Sobrino-Plata J, Millán R, Carpena-Ruiz RO, Leduc D, Andrews JC, Abadía J, Hernández LE (2011) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34:778–791PubMedCrossRefGoogle Scholar
  8. Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9PubMedCrossRefGoogle Scholar
  9. Cobbet C, Goldsbrough PB (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  10. Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16:73–78PubMedCrossRefGoogle Scholar
  11. Dietz R, Riget F, Cleemann M, Aarkrog A, Johansen P, Hansen JC (2000) Comparison of contaminants from different trophic levels and ecosystems. Sci Total Environ 245:221–231PubMedCrossRefGoogle Scholar
  12. Domínguez-Solís JR, López-Martín MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476PubMedCrossRefGoogle Scholar
  13. Dubreuil-Maurizi C, Vitecek J, Marty L, Branciard L, Frettinger P, Wendehenne D, Meyer AJ, Mauch F, Poinssot B (2011) Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression, and the hypersensitive response. Plant Physiol 157:2000–2012PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fagioni M, D’Amici GM, Timperio AM, Zolla L (2009) Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment. J Prot Res 8:310–326CrossRefGoogle Scholar
  15. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18PubMedCentralPubMedCrossRefGoogle Scholar
  16. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46CrossRefGoogle Scholar
  18. Gogorcena Y, Larbi A, Andaluz S, Carpena RO, Abadía A, Abadía J (2011) Effects of cadmium on cork oak (Quercus suber L.) plants grown in hydroponics. Tree Physiol 31:1401–1412PubMedCrossRefGoogle Scholar
  19. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 52:631–640Google Scholar
  20. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322PubMedCentralPubMedCrossRefGoogle Scholar
  21. Harada E, Choi YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158:655–661CrossRefGoogle Scholar
  22. Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066PubMedCentralPubMedCrossRefGoogle Scholar
  23. Janicka-Russak M, Kabała K, Burzyński M, Kłobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728PubMedCentralPubMedCrossRefGoogle Scholar
  24. Janik E, Maksymiec W, Mazur R, Garstka M, Gruszecki WI (2010) Structural and functional modifications of the major light-harvesting complex II in cadmium- or copper-treated Secale cereale. Plant Cell Physiol 51:1330–1340PubMedCrossRefGoogle Scholar
  25. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defences. Int J Mol Sci 13:3145–3175PubMedCentralPubMedCrossRefGoogle Scholar
  26. Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674PubMedCrossRefGoogle Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  28. Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lim B, Pasternak M, Meyer AJ, Cobbett CS (2013) Restricting glutamylcysteine synthetase activity to the cytosol or glutathione biosynthesis to the plastid is sufficient for normal plant development and stress tolerance. Plant Biol May 20. doi: 10.1111/plb.12033
  30. Lomonte C, Sgherri C, Baker AJM, Kolev SD, Navari-Izzo F (2010) Antioxidative response of Atriplex codonocarpa to mercury. Environ Exp Bot 69:9–16CrossRefGoogle Scholar
  31. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 345:659–668CrossRefGoogle Scholar
  32. Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 21; 566(1–3):1–5CrossRefGoogle Scholar
  33. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  34. Molins H, Michelet L, Lanquar V, Agorio A, Giraudat J, Roach T, Krieger-Liszkay A, Thomine S (2013) Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. Plant Cell Environ 36:804–817PubMedCrossRefGoogle Scholar
  35. Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566PubMedCentralPubMedCrossRefGoogle Scholar
  36. Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134PubMedCentralPubMedCrossRefGoogle Scholar
  37. Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. In: The Arabidopsis Book, vol 9, American Society of Plant Biologists. doi:  10.1199/tab.0142
  38. Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251PubMedCrossRefGoogle Scholar
  39. Ortega-Villasante C, Hernández LE, Rellán-Álvarez R, del Campo FF, Carpena-Ruiz RO (2007) Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176:96–107PubMedCrossRefGoogle Scholar
  40. Pagliano C, Raviolo M, Dalla VF, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, La Rocca N (2006) Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol B 84:70–78PubMedCrossRefGoogle Scholar
  41. Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2006) Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49:159–172PubMedCrossRefGoogle Scholar
  42. Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288PubMedCrossRefGoogle Scholar
  43. Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837PubMedCentralPubMedCrossRefGoogle Scholar
  44. Rausch T, Gromes R, Liedschulte V, Müller I, Bogs J, Galovic V, Wachter A (2007) Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biol 9:565–572PubMedCrossRefGoogle Scholar
  45. Rellán-Álvarez R, Ortega-Villasante C, Álvarez-Fernández A, Del Campo FF, Hernández LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279:41–50CrossRefGoogle Scholar
  46. Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isoenzyme. New Phytol 170:43–52PubMedCrossRefGoogle Scholar
  47. Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290PubMedCentralPubMedCrossRefGoogle Scholar
  48. Schürmann P, Jacquot JP (2000) Plant thioredoxin systems revisited. Annu Rev Plant Biol 51:371–400CrossRefGoogle Scholar
  49. Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35:334–346PubMedCrossRefGoogle Scholar
  50. Sobrino-Plata J, Ortega-Villasante C, Flores-Cáceres ML, Escobar C, Del Campo FF, Hernández LE (2009) Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere 77:946–954PubMedCrossRefGoogle Scholar
  51. Sobrino-Plata J, Herrero J, Carrasco-Gil S, Pérez-Sanz A, Lobo C, Escobar C, Millán R, Hernández LE (2013) Specific stress responses to cadmium, arsenic and mercury appear in the metallophyte Silene vulgaris when grown hydroponically. RSC Adv 3:4736–4744CrossRefGoogle Scholar
  52. Solti A, Gáspar L, Mészáros I, Szigeti Z, Lévai L, Sávári E (2008) Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca). Ann Bot 102:771–782PubMedCentralPubMedCrossRefGoogle Scholar
  53. Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Périlleux C (2003) A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol 3:2PubMedCentralPubMedCrossRefGoogle Scholar
  54. Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May M, Sungb ZR (2000) The root meristemless1/cadmium sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109PubMedCentralPubMedCrossRefGoogle Scholar
  55. Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites – A review. J Hazard Mater 221–222:1–18PubMedGoogle Scholar
  56. Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574PubMedCentralPubMedCrossRefGoogle Scholar
  57. Yannarelli GG, Fernández-Álvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512PubMedCrossRefGoogle Scholar
  58. Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509PubMedCrossRefGoogle Scholar
  59. Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79CrossRefGoogle Scholar
  60. Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Juan Sobrino-Plata
    • 1
    • 2
  • Dirk Meyssen
    • 3
  • Ann Cuypers
    • 3
  • Carolina Escobar
    • 2
  • Luis E. Hernández
    • 1
  1. 1.Laboratory of Plant Physiology, Department of BiologyUniversidad Autónoma de MadridCantoblancoSpain
  2. 2.Departamento de Ciencias del MedioambienteUniversidad de Castilla la ManchaToledoSpain
  3. 3.Centre for Environmental SciencesUniversiteit HasseltDiepenbeekBelgium

Personalised recommendations