Plant and Soil

, Volume 377, Issue 1–2, pp 295–308 | Cite as

Early vertical distribution of roots and its association with drought tolerance in tropical maize

  • C. Grieder
  • S. Trachsel
  • A. Hund
Regular Article


Background and aims

Selection for deep roots to improve drought tolerance of maize (Zea mays L.) requires presence of genetic variation and suitable screening methods.


We examined a diverse set of 33 tropical maize inbred lines that were grown in growth columns in the greenhouse up to the 2-, 4-, and 6-leaf stage and in the field in Mexico. To determine length of roots from different depths at high throughput, we tested an approach based on staining roots with methylene blue and measuring the amount of absorbed dye as proxy measure for root length.


Staining provided no advantage over root weights that are much easier to measure and therefore preferable. We found significant genotypic variation for all traits at the 6-leaf stage. For development rates between the 2-leaf and the 6-leaf stage, genotypes only differed for rooting depth and the number of crown roots. Positive correlations of leaf area with root length and rooting depth indicated a common effect of plant vigor. However, leaf area in growth columns was negatively related to grain yield under drought (r = −0.50).


The selection for deeper roots by an increase in plant vigor likely results in a poorer performance under drought conditions. The proportion of deep roots was independent of other traits but showed a low heritability and was not correlated to field performance. An improved screening protocol is proposed to increase throughput and heritability for this trait.


Tropical maize Rooting depth Growth column Shoot-root relations 



The authors would like to thank Claude Welcker from INRA Montpellier for provision of seeds for growth column trials, Jill Cairns for overseeing trials hosted by CIMMYT as well as Vanessa Weber for her technical assistance during data collection and Ciro Sanchez for data collection and management of drought stress trials in the field. This study was supported by the Generation Challenge Programme (Project 15).

Supplementary material

11104_2013_1997_MOESM1_ESM.pdf (250 kb)
ESM 1 (PDF 250 kb)
11104_2013_1997_MOESM2_ESM.pdf (203 kb)
ESM 2 (PDF 202 kb)
11104_2013_1997_MOESM3_ESM.pdf (966 kb)
ESM 3 (PDF 966 kb)
11104_2013_1997_MOESM4_ESM.pdf (111 kb)
ESM 4 (PDF 110 kb)


  1. Acuña TLB, Wade LJ (2013) Use of genotype x environment interactions to understand rooting depth and the ability of wheat to penetrate hard soils. Ann Bot 112:359–368. doi: 10.1093/aob/mcs251 PubMedCrossRefGoogle Scholar
  2. Araki H, Hirayama M, Hirasawa H, Iijima M (2000) Which roots penetrate the deepest in rice and maize root systems? Plant Prod Sci 3:281–288. doi: 10.1626/pps.3.281 CrossRefGoogle Scholar
  3. Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79. doi: 10.1214/09-SS054 CrossRefGoogle Scholar
  4. Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric Water Manage 80:212–224. doi: 10.1016/j.agwat.2005.07.014 CrossRefGoogle Scholar
  5. Bolanos J, Edmeades G, Martinez L (1993) Eight cycles of selection for drought tolerance in lowland tropical maize. III. Responses in drought-adaptive physiological and morphological traits. Field Crops Res 31:269–286. doi: 10.1016/0378-4290(93)90066-V CrossRefGoogle Scholar
  6. Bonser AM, Lynch J, Snapp S (1996) Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol 132:281–288PubMedCrossRefGoogle Scholar
  7. Campos H, Cooper M, Habben JE et al (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90:19–34. doi: 10.1016/j.fcr.2004.07.003 CrossRefGoogle Scholar
  8. Core Development Team R (2009) R: A language and environment for statistical computing. R foundation for Statistical Computing, ViennaGoogle Scholar
  9. Falconer DS, Mackay TF (1996) Introduction to quantitative genetics. Longman Group Limited, HarlowGoogle Scholar
  10. Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml user guide release 2.0. VSN international Ltd, Hemel Hempstead, HP1 1ES, UKGoogle Scholar
  11. Hammer GL, Dong Z, McLean G et al (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt? Crop Sci 49:299–312. doi: 10.2135/cropsci2008.03.0152 CrossRefGoogle Scholar
  12. Hao XM, Zhang RD, Kravchenko A (2005) Effects of root density distribution models on root water uptake and water flow under irrigation. Soil Sci 170:167–174. doi: 10.1097/ CrossRefGoogle Scholar
  13. Hodge A (2009) Root decisions. Plant, Cell Environ 32:628–640. doi: 10.1111/j.1365-3040.2008.01891.x CrossRefGoogle Scholar
  14. Hund A, Fracheboud Y, Soldati A et al (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109:618–629. doi: 10.1007/s00122-004-1665-1 PubMedCrossRefGoogle Scholar
  15. Hund A, Ruta N, Liedgens M (2009a) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 318:311–325. doi: 10.1007/s11104-008-9843-6 CrossRefGoogle Scholar
  16. Hund A, Trachsel S, Stamp P (2009b) Growth of axile and lateral roots of maize: I development of a phenotying platform. Plant Soil 325:335–349. doi: 10.1007/s11104-009-9984-2 CrossRefGoogle Scholar
  17. Hund A, Reimer R, Messmer R (2011) A consensus map of QTLs controlling the root length of maize. Plant Soil 344:143–158. doi: 10.1007/s11104-011-0735-9 CrossRefGoogle Scholar
  18. Kato Y, Abe J, Kamoshita A, Yamagishi J (2006) Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 287:117–129. doi: 10.1007/s11104-006-9008-4 CrossRefGoogle Scholar
  19. Kirkegaard J, Lilley J, Howe G, Graham J (2007) Impact of subsoil water use on wheat yield. Aust J Agr Res 58:303–315. doi: 10.1071/AR06285 CrossRefGoogle Scholar
  20. Kumar B, Abdel-Ghani AH, Reyes-Matamoros J et al (2012) Genotypic variation for root architecture traits in seedlings of maize (Zea mays L.) inbred lines. Plant Breed 131:465–478. doi: 10.1111/j.1439-0523.2012.01980.x CrossRefGoogle Scholar
  21. Lebreton C, Lazić-Jančić V, Steed A et al (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865. doi: 10.1093/jxb/46.7.853 CrossRefGoogle Scholar
  22. Lorens G, Bennett J, Loggale L (1987) Differences in drought resistance between two corn hybrids. I. Water relations and root length density. Agron J 79:802–807CrossRefGoogle Scholar
  23. Ludlow M, Muchow R (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153. doi: 10.1016/s0065-2113(08)60477-0 CrossRefGoogle Scholar
  24. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13. doi: 10.1104/pp.109.1.7 PubMedCentralPubMedGoogle Scholar
  25. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357. doi: 10.1093/aob/mcs293 PubMedCrossRefGoogle Scholar
  26. Lynch JP, Ho MD, Phosphorus L (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56. doi: 10.1007/s11104-004-1096-4 CrossRefGoogle Scholar
  27. Mace ES, Singh V, Van Oosterom EJ et al (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109. doi: 10.1007/s00122-011-1690-9 PubMedCrossRefGoogle Scholar
  28. Manavalan LP, Musket T, Nguyen HT (2011) Natural genetic variation for root traits among diversity lines of maize (Zea mays L.). Maydica 56:59–68Google Scholar
  29. Manschadi AM, Christopher J, deVoil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837. doi: 10.1071/FP06055 CrossRefGoogle Scholar
  30. Mock J, McNeill M (1979) Cold tolerance of maize inbred lines adapted to various latitudes in North America. Crop Sci 19:239–242. doi: 10.2135/cropsci1979.0011183X001900020017x CrossRefGoogle Scholar
  31. Passioura JB (1983) Roots and drought resistance. Agric Water Manage 7:265–280. doi: 10.1016/0378-3774(83)90089-6 CrossRefGoogle Scholar
  32. Patterson HD, Williams ER (1976) A new class of resolvable incomplete block designs. Biometrika 63:83–92CrossRefGoogle Scholar
  33. Pierret A, Moran CJ, Doussan C (2005) Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol 166:967–980. doi: 10.1111/j.1469-8137.2005.01389.x PubMedCrossRefGoogle Scholar
  34. Pommel B, Bouchard C (1990) Effects of seed weight and sowing depth on growth and development of maize seedlings. Agronomie 10:699–708. doi: 10.1051/agro:19900901 CrossRefGoogle Scholar
  35. Ribaut J, Betran J, Monneveux P, Setter T (2009) Drought tolerance in maize. In: Bennetzen JL, Hake SC (eds) Handbook of Maize: Its biology. Springer Science + Business Media, New York, pp 311–344CrossRefGoogle Scholar
  36. Richards R, Rebetzke G, Appels R, Condon A (2000) Physiological traits to improve the yield of rainfed wheat: can molecular genetics help? In: Ribaut JM, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. A strategic planning workshop held at CIMMYT. El Batan, Mexico, pp 54–58Google Scholar
  37. Sattelmacher B, Klotz F, Marschner H (1983) Vergleich von zwei nicht-destruktiven Methoden zur Bestimmung von Wurzeloberflächen. Z Pflanz Bodenkunde 146:449–459. doi: 10.1002/jpln.19831460406 CrossRefGoogle Scholar
  38. Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328. doi: 10.2307/3100092 CrossRefGoogle Scholar
  39. Strigens A, Grieder C, Haussmann BIG, Melchinger AE (2012) Genetic variation among inbred lines and testcrosses of maize for early growth parameters and their relationship to final dry matter yield. Crop Sci 52:1084–1092. doi: 10.2135/cropsci2011.08.0426 CrossRefGoogle Scholar
  40. Trachsel S, Messmer R, Stamp P, Hund A (2009) Mapping of QTLs for lateral and axile root growth of tropical maize. Theor Appl Genet 119:1413–1424. doi: 10.1007/s00122-009-1144-9 PubMedCrossRefGoogle Scholar
  41. Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87. doi: 10.1007/s11104-010-0623-8 CrossRefGoogle Scholar
  42. Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2013) Maize root growth angles become steeper under low N conditions. Field Crops Res 140:18–31. doi: 10.1016/j.fcr.2012.09.010 CrossRefGoogle Scholar
  43. Tuberosa R, Sanguineti MC, Landi P et al (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712. doi: 10.1023/A:1014897607670 PubMedCrossRefGoogle Scholar
  44. van Beem J, Smith M, Zobel R (1998) Estimating root mass in maize using a portable capacitance meter. Agron J 90:566–570. doi: 10.2134/agronj1998.00021962009000040021x CrossRefGoogle Scholar
  45. Van Staveren JP, Stoop WA (1985) Adaptation to toposequence land types in West Africa of different sorghum genotypes in comparison with local cultivars of sorghum, millet, and maize. Field Crops Res 11:13–35. doi: 10.1016/0378-4290(85)90089-9 CrossRefGoogle Scholar
  46. Wan C, Xu W, Sosebee RE et al (2000) Hydraulic lift in drought-tolerant and -susceptible maize hybrids. Plant Soil 219:117–126. doi: 10.1023/A:1004740511326 CrossRefGoogle Scholar
  47. Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Cri Rev Plant Sci 25:279–301. doi: 10.1080/07352680600709917 CrossRefGoogle Scholar
  48. Watt M, Moosavi S, Cunningham SC et al (2013) A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites. Ann Bot 112:447–455. doi: 10.1093/aob/mct122 PubMedCrossRefGoogle Scholar
  49. Yadav R, Courtois B, Huang N, McLaren G (1997) Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor Appl Genet 94:619–632. doi: 10.1007/s001220050459 CrossRefGoogle Scholar
  50. Yu G-R, Zhuang J, Nakayama K, Jin Y (2007) Root water uptake and profile soil water as affected by vertical root distribution. Plant Ecol 189:15–30. doi: 10.1007/s11258-006-9163-y CrossRefGoogle Scholar
  51. Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695. doi: 10.1007/s00122-005-2051-3 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Agricultural SciencesETH ZurichZurichSwitzerland
  2. 2.International Maize and Wheat Improvement Center CIMMYTMexicoMexico

Personalised recommendations