Plant and Soil

, Volume 377, Issue 1–2, pp 423–438 | Cite as

Effect of willow short rotation coppice on soil properties after three years of growth as compared to forest, grassland and arable land uses

  • M. Stauffer
  • C. Leyval
  • J.-J. Brun
  • P. Leportier
  • J. Berthelin
Regular Article



Despite many studies on the impact of arable land conversion to Short Rotation Coppice (SRC), few studies have been carried out on soil biota. This study aims at assessing biological and physico-chemical soil properties that are affected by SRC compared to forestry, grassland and an agrosystem.


All samples were collected in the Aisne valley (France), from the same type of soil, with four land uses, i.e. willow SRC, agrosystem, grassland and alluvial forest, 3 years after SRC was planted. We studied fertility, the biological community (earthworm diversity, density and biomass, bacterial and fungal density and community structures) and biochemical parameters (enzyme activities, basal respiration and nitrification).


After 3 years’ growth, soil biological parameters (fungal abundance, laccase activity, anecic earthworm proportion and earthworm diversity) and CEC were higher in the SRC than in the agrosystem soil. In parallel, fungal abundance was higher in SRC than in forest and grassland soils.


Compared to annual arable crops, SRC promoted biological properties. However, in the short term, the parameters we measured were lower than in the forest and grassland soils. The use of certain parameters as indicators of soil functioning/quality assessment to discriminate the four land uses is discussed.


Short rotation coppice Salix Land use Soil biological indicators Soil biochemical indicators 



We thank Philippe Lucas, the owner of the SRC plot, Florent Germon from Luzéal Company and Antoine Dalle from Salix Energie for their help and collaboration in the field work. This project was supported by Kinomé company and ANRT (National Agency of Research and Technology) with a CIFRE (Industrial Convention of Research Formation) contract number 2009/13/07. ADEME («Agence de l’Environnement et de la Maîtrise de l’Energie») sponsored and supported the research (contract number 0975C0095).


  1. Ananyeva ND, Susyan EA, Chernova OV et al (2006) The ratio of fungi and bacteria in the biomass of different types of soil determined by selective inhibition. Microbiology 75:702–707. doi: 10.1134/S0026261706060130 CrossRefGoogle Scholar
  2. Andrews S, Karlen D, Cambardella C (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68:1945–1962CrossRefGoogle Scholar
  3. Aon M, Colaneri A (2001) II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl Soil Ecol 18:255–270. doi: 10.1016/S0929-1393(01)00161-5 CrossRefGoogle Scholar
  4. Bailey V, Smith J, Bolton H Jr (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007. doi: 10.1016/S0038-0717(02)00033-0 CrossRefGoogle Scholar
  5. Baum C, Hrynkiewicz K, Leinweber P, Meißner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix × dasyclados). Z Pflanzenernähr Bodenk 169:516–522. doi: 10.1002/jpln.200521925 CrossRefGoogle Scholar
  6. Baum S, Weih M, Busch G et al (2009) The impact of Short Rotation Coppice plantations on phytodiversity. Landbauforsch Volk 59:163–170Google Scholar
  7. Baum S, Bolte A, Weih M (2012a) Short Rotation Coppice (SRC) plantations provide additional habitats for vascular plant species in agricultural mosaic landscapes. Bioenerg Res 5:573–583. doi: 10.1007/s12155-012-9195-1 CrossRefGoogle Scholar
  8. Baum S, Bolte A, Weih M (2012b) High value of short rotation coppice plantations for phytodiversity in rural landscapes. Glob Chang Biol Bioenergy 4:728–738. doi: 10.1111/j.1757-1707.2012.01162.x CrossRefGoogle Scholar
  9. Birkhofer K, Bezemer TM, Bloem J et al (2008) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308. doi: 10.1016/j.soilbio.2008.05.007 CrossRefGoogle Scholar
  10. Blouin M, Hodson ME, Delgado EA et al (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64:161–182. doi: 10.1111/ejss.12025 CrossRefGoogle Scholar
  11. Bonneau M, Souchier B (1994) Pédologie Tome 2: Constituants et propriétés du sol, Elsevier MassonGoogle Scholar
  12. Bouché MB (1972) Lombriciens de France, Ecologie et systématique, I.N.R.A., Ann. zool. - écol. anim., numéro spécialGoogle Scholar
  13. Brejda J, Moorman T, Karlen D, Dao T (2000) Identification of regional soil quality factors and indicators: I. Central and southern high plains. Soil Sci Soc Am J 64:2115–2124CrossRefGoogle Scholar
  14. Burns RG, Dick RP (2002) Enzymes in the environment. Activity, ecology and applications, Marcel Dekker IncGoogle Scholar
  15. Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49:637–644. doi: 10.1016/j.pedobi.2005.06.003 CrossRefGoogle Scholar
  16. Carson JK, Gleeson DB, Clipson N, Murphy DV (2010) Afforestation alters community structure of soil fungi. Fungal Biol 114:580–584. doi: 10.1016/j.funbio.2010.04.008 PubMedCrossRefGoogle Scholar
  17. Carter M (2002) Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agron J 94:38–47CrossRefGoogle Scholar
  18. Cébron A, Beguiristain T, Faure P et al (2009) Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl Biochem Microbiol 75:6322–6330. doi: 10.1128/AEM.02862-08 Google Scholar
  19. Chaer G, Myrold D, Bottomley P (2009) A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the Pacific Northwest. Soil Biol Biochem 41:822–830. doi: 10.1016/j.soilbio.2009.02.005 CrossRefGoogle Scholar
  20. Chan K (2001) An overview of some tillage impacts on earthworm population abundance and diversity — implications for functioning in soils. Soil Tillage Res 57:179–191. doi: 10.1016/S0167-1987(00)00173-2 CrossRefGoogle Scholar
  21. Chen CR, Condron LM, Davis MR, Sherlock RR (2000) Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant Soil 220:151–163. doi: 10.1023/A:1004712401721 CrossRefGoogle Scholar
  22. Chen CR, Condron LM, Xu ZH (2008) Impacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: a review. For Ecol Manag 255:396–409. doi: 10.1016/j.foreco.2007.10.040 CrossRefGoogle Scholar
  23. Cluzeau D, Guernion M, Chaussod R et al (2012) Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol 49:63–72. doi: 10.1016/j.ejsobi.2011.11.003 CrossRefGoogle Scholar
  24. Costa P, Souza-Motta C, Malosso E (2012) Diversity of filamentous fungi in different systems of land use. Agrofor Syst 85:195–203CrossRefGoogle Scholar
  25. Cuendet G (1995) Identification des lombriciens de Suisse. Vauderens 19pGoogle Scholar
  26. Curry JP, Byrne D, Schmidt O (2002) Intensive cultivation can drastically reduce earthworm populations in arable land. Eur J Soil Biol 38:127–130. doi: 10.1016/S1164-5563(02)01132-9 CrossRefGoogle Scholar
  27. De Vries FT, Hoffland E, van Eekeren N et al (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38:2092–2103. doi: 10.1016/j.soilbio.2006.01.008 CrossRefGoogle Scholar
  28. De Vries FT, Bloem J, van Eekeren N et al (2007) Fungal biomass in pastures increases with age and reduced N input. Soil Biol Biochem 39:1620–1630. doi: 10.1016/j.soilbio.2007.01.013 CrossRefGoogle Scholar
  29. Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran J, Jones A (eds) Methods for assessing soil quality. pp 247–271Google Scholar
  30. Dimitriou I, Baum C, Baum S et al (2009) The impact of short rotation coppice (SRC) cultivation on the environment. Landbauforsch Volk 59:159Google Scholar
  31. Edwards CA, Bohlen PJ (1996) Biology and Ecology of Earthworms Third edition, Chapman&Hall.Google Scholar
  32. Ens J, Farrell R, Bélanger N (2013) Early effects of afforestation with willow (Salix purpurea, “Hotel”) on soil carbon and nutrient availability. Forest 137–154. doi: 10.3390/f4010137Google Scholar
  33. Faasch RJ, Patenaude G (2012) The economics of short rotation coppice in Germany. Biomass Bioenergy 45:27–40. doi: 10.1016/j.biombioe.2012.04.012 CrossRefGoogle Scholar
  34. Failing L, Gregory R (2003) Ten common mistakes in designing biodiversity indicators for forest policy. J Environ Manag 68:121–132. doi: 10.1016/S0301-4797(03)00014-8 CrossRefGoogle Scholar
  35. Felske A, Akkermans A, De Vos W (1998) Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription PCR in temperature gradient gel electrophoresis fingerprints. Appl Environ Microbiol 64:4581–4587PubMedCentralPubMedGoogle Scholar
  36. Floch C, Alarcon-Gutiérrez E, Criquet S (2007) ABTS assay of phenol oxidase activity in soil. J Microbiol Meth 71:319–324. doi: 10.1016/j.mimet.2007.09.020 CrossRefGoogle Scholar
  37. Frey S, Elliott E, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585. doi: 10.1016/S0038-0717(98)00161-8 CrossRefGoogle Scholar
  38. Friis K, Reddersen J, Petersen J (1999) Planting SRC willow on arable fields: effects on earthworm fauna. 105:71–78Google Scholar
  39. Green VS, Stott DE, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701. doi: 10.1016/j.soilbio.2005.06.020 CrossRefGoogle Scholar
  40. Hailu A, Chambers R (2012) A Luenberger soil-quality indicator. J Prod Anal 38:145–154. doi: 10.1007/s11123-011-0255-x CrossRefGoogle Scholar
  41. Harinikumar K, Bagyaraj D (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biol Fertil Soils 18:115–118. doi: 10.1007/BF00336456 CrossRefGoogle Scholar
  42. Havlicek E (2012) Soil biodiversity and bioindication: from complex thinking to simple acting. Eur J Soil Biol 49:80–84. doi: 10.1016/j.ejsobi.2012.01.009 CrossRefGoogle Scholar
  43. Hill TCJ, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11. doi: 10.1111/j.1574-6941.2003.tb01040.x PubMedCrossRefGoogle Scholar
  44. Insam H, Mitchell C, Dormaar J (1991) Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. Soil Biol Biochem 23:459–464CrossRefGoogle Scholar
  45. Jandl G, Baum C, Blumschein A, Leinweber P (2012) The impact of short rotation coppice on the concentrations of aliphatic soil lipids. Plant Soil 350:163–177. doi: 10.1007/s11104-011-0892-x CrossRefGoogle Scholar
  46. Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217. doi: 10.1021/jf00062a013 CrossRefGoogle Scholar
  47. Karlen DL, Mausbach MJ, Doran JW et al (1997) Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Sci Soc Am J 61:4–10CrossRefGoogle Scholar
  48. Khasa PD, Chakravarty P, Robertson A et al (2002) The mycorrhizal status of selected poplar clones introduced in Alberta. Biomass Bioenergy 22:99–104. doi: 10.1016/S0961-9534(01)00072-1 CrossRefGoogle Scholar
  49. Lagerlöf J, Pålsson O, Arvidsson J (2011) Earthworms influenced by reduced tillage, conventional tillage and energy forest in Swedish agricultural field experiments. Acta Agric Scand Sect B Soil Plant Sci 62:235–244. doi: 10.1080/09064710.2011.602717 Google Scholar
  50. Lavelle P, Spain A (2005) Soil ecology. Springer, AmsterdamGoogle Scholar
  51. Ledin S (1998) Environmental consequences when growing short rotation forests in Sweden. Biomass Bioenergy 15:49–55. doi: 10.1016/S0961-9534(97)10054-X CrossRefGoogle Scholar
  52. Liang C, da Jesus EC, Duncan DS et al (2012) Soil microbial communities under model biofuel cropping systems in southern Wisconsin, USA: impact of crop species and soil properties. Appl Soil Ecol 54:24–31. doi: 10.1016/j.apsoil.2011.11.015 CrossRefGoogle Scholar
  53. Lockwell J, Guidi W, Labrecque M (2012) Soil carbon sequestration potential of willows in short-rotation coppice established on abandoned farm lands. Plant Soil 360:299–318. doi: 10.1007/s11104-012-1251-2 CrossRefGoogle Scholar
  54. Lueders T, Wagner B, Claus P, Friedrich MW (1998) Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ Microbiol 64:4581–4587. doi: 10.1046/j.1462-2920.2003.00535.x Google Scholar
  55. Makeschin F (1994) Effects of energy forestry on soils. Biomass Bioenergy 6:63–79CrossRefGoogle Scholar
  56. Marx M, Wood M, Jarvis S (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640. doi: 10.1016/S0038-0717(01)00079-7 CrossRefGoogle Scholar
  57. Muyzer G, Brinkhoff T, Nübel U et al (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Kluwer Academic Publishers, Dordrecht, pp 1–27Google Scholar
  58. Oades J (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400CrossRefGoogle Scholar
  59. Peigne J, Cannavaciuolo M, Gautronneau Y et al (2009) Earthworm populations under different tillage systems in organic farming. Soil Tillage Res 104:207–214CrossRefGoogle Scholar
  60. Pérès G, Piron D, Bellido A, Cluzeau D (2008) Earthworms used as indicators of agricultural managements. Fresen Environ Bull 17:1181–1189Google Scholar
  61. Pfiffner L, Luka H (2007) Earthworm populations in two low-input cereal farming systems. Appl Soil Ecol 37:184–191. doi: 10.1016/j.apsoil.2007.06.005 CrossRefGoogle Scholar
  62. Plassart P, Akpa Vinceslas M, Gangneux C et al (2008) Molecular and functional responses of soil microbial communities under grassland restoration. Agric Ecosyst Environ 127:286–293. doi: 10.1016/j.agee.2008.04.008 CrossRefGoogle Scholar
  63. Püttsepp Ü, Rosling A, Taylor A (2004) Ectomycorrhizal fungal communities associated with Salix viminalis L. and S. dasyclados Wimm. clones in a short-rotation forestry plantation. Forest Ecol Manag 196:413–424. doi: 10.1016/j.foreco.2004.04.003 CrossRefGoogle Scholar
  64. Ratcliff AW, Busse MD, Shestak CJ (2006) Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl Soil Ecol 34:114–124. doi: 10.1016/j.apsoil.2006.03.002 CrossRefGoogle Scholar
  65. Rezaei SA, Gilkes RJ, Andrews SS (2006) A minimum data set for assessing soil quality in rangelands. Geoderma 136:229–234. doi: 10.1016/j.geoderma.2006.03.021 CrossRefGoogle Scholar
  66. Robinson K, Karp A, Taylor G (2004) Defining leaf traits linked to yield in short-rotation coppice Salix. Biomass Bioenergy 26:417–431. doi: 10.1016/j.biombioe.2003.08.012 CrossRefGoogle Scholar
  67. Rossi J, Franc A, Rousseau G (2009) Indicating soil quality and the GISQ. Soil Biol Biochem 41:444–445. doi: 10.1016/j.soilbio.2008.10.004 CrossRefGoogle Scholar
  68. Rowe RL, Hanley ME, Goulson D et al (2011) Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 35:325–336. doi: 10.1016/j.biombioe.2010.08.046 CrossRefGoogle Scholar
  69. Rytter R, Rytter L (1998) Growth, decay, and turnover rates of fine roots of basket willows. Can J For Res 28:893–902CrossRefGoogle Scholar
  70. Saha S, Prakash V, Kundu S et al (2008) Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in N-W Himalaya. Eur J Soil Biol 44:309–315. doi: 10.1016/j.ejsobi.2008.02.004 CrossRefGoogle Scholar
  71. Scheu S, Parkinson D (1994) Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Biol Biochem 26:1515–1525CrossRefGoogle Scholar
  72. Schnurer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261PubMedCentralPubMedGoogle Scholar
  73. Schoenholtz S, Miegroet H, Burger J (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecol Manag 138:335–356. doi: 10.1016/S0378-1127(00)00423-0 CrossRefGoogle Scholar
  74. Schrader S, Zhang H (1997) Earthworm casting: stabilization or destabilization of soil structure? Soil Biol Biochem 29:469–475. doi: 10.1016/S0038-0717(96)00103-4 CrossRefGoogle Scholar
  75. Schulz U, Brauner O, Gruay H (2009) Animal diversity on short-rotation coppices - a review. Landbauforsch Volk 59(181):171Google Scholar
  76. Simpson RT, Frey S, Six J, Thiet R (2004) Preferential accumulation of microbial carbon in aggregate structures of no-tillage soils. Soil Sci Soc Am J 68:1249–1255CrossRefGoogle Scholar
  77. Sinsabaugh RL, Lauber CL, Weintraub MN et al (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264. doi: 10.1111/j.1461-0248.2008.01245.x PubMedGoogle Scholar
  78. Šlapokas T, Granhall U (1991) Decomposition of willow-leaf litter in a short-rotation forest in relation to fungal colonization and palatability for earthworms. Biol Fertil Soils 10:241–248. doi: 10.1007/BF00337374 CrossRefGoogle Scholar
  79. Stenberg B (1999) Monitoring soil quality of arable land: microbiological indicators. Acta Agric Scand Sect B Soil Plant Sci 49:1–24. doi: 10.1080/09064719950135669 Google Scholar
  80. Suthar S (2009) Earthworm communities a bioindicator of arable land management practices: a case study in semiarid region of India. Ecol Indic 9:588–594. doi: 10.1016/j.ecolind.2008.08.002 CrossRefGoogle Scholar
  81. Thion C, Cébron A, Beguiristain T, Leyval C (2012) Long-term in situ dynamics of the fungal communities in a multi-contaminated soil are mainly driven by plants. FEMS Microbiol Ecol 82:169–181. doi: 10.1111/j.1574-6941.2012.01414.x PubMedCrossRefGoogle Scholar
  82. Toljander Y, Weih M, Taylor A (2006) Mycorrhizal colonisation of willows in plantations and adjacent natural stands. Proceedings of the 5th International Conference on MycorrhizaGoogle Scholar
  83. Van der Heijden E (2001) Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 10:185–193. doi: 10.1007/s005720000077 CrossRefGoogle Scholar
  84. Velasquez E, Lavelle P, Andrade M (2007) GISQ, a multifunctional indicator of soil quality. Soil Biol Biochem 39:3066–3080. doi: 10.1016/j.soilbio.2007.06.013 CrossRefGoogle Scholar
  85. Wardle DA, Giller KE (1996) The quest for a contemporary ecological dimension to soil biology. Soil Biol Biochem 28:1549–1554. doi: 10.1016/S0038-0717(96)00293-3 CrossRefGoogle Scholar
  86. Wardle DA, Yeates GW, Watson RN, Nicholson KS (1993) Response of soil microbial biomass and plant litter decomposition to weed management strategies in maize and asparagus cropping systems. Soil Biol Biochem 25:857–868. doi: 10.1016/0038-0717(93)90088-S CrossRefGoogle Scholar
  87. Whalen JK, Costa C (2003) Linking spatio-temporal dynamics of earthworm populations to nutrient cycling in temperate agricultural and forest ecosystems: the 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia 47:801–806. doi: 10.1078/0031-4056-00262 Google Scholar
  88. Zaborski ER (2003) Allyl isothiocyanate: an alternative chemical expellant for sampling earthworms. Appl Soil Ecol 22:87–95. doi: 10.1016/S0929-1393(02)00106-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Stauffer
    • 1
    • 2
    • 4
  • C. Leyval
    • 1
    • 2
    • 5
  • J.-J. Brun
    • 3
  • P. Leportier
    • 4
  • J. Berthelin
    • 1
    • 2
  1. 1.Université de Lorraine, LIECFaculté des Sciences et TechnologiesVandoeuvre-les-Nancy CedexFrance
  2. 2.CNRS, LIECFaculté des Sciences et TechnologiesVandoeuvre-les-Nancy CedexFrance
  3. 3.UR EMGR, IRSTEASaint Martin D’Héres CedexFrance
  4. 4.KINOMÉMontreuil sous BoisFrance
  5. 5.LIEC UMR7360 Université de Lorraine, CNRSFaculté des Sciences et TechnologiesVandoeuvre-les-Nancy CedexFrance

Personalised recommendations