Plant and Soil

, Volume 377, Issue 1–2, pp 357–367 | Cite as

Physiological and molecular analysis of aluminum tolerance in selected Kenyan maize lines

  • T. K. Matonyei
  • R. K. Cheprot
  • J. Liu
  • M. A. Piñeros
  • J. E. Shaff
  • S. Gudu
  • B. Were
  • J. V. Magalhaes
  • L. V. Kochian
Regular Article



Aluminum (Al) toxicity is an important limitation to maize production in many tropical and sub-tropical acid soil areas. The aim of this study was to survey the variation in Al tolerance in a panel of maize lines adapted for Kenya and look for novel sources of Al tolerance.


112 Kenyan maize accessions were phenotyped for Al tolerance in solution culture. Several Al tolerance-related parameters including relative net root growth (RNRG), root apex Al accumulation, Al-activated root organic acid exudation, and expression of the maize Al tolerance gene, ZmMATE1, were used to classify Kenyan maize accessions.


Based on RNRG, 42 %, 28 %, and 30 % of the lines were classified as highly tolerant, moderately tolerant and sensitive, respectively. Tolerant accessions accumulated less Al in their root apices compared to sensitive lines. The Kenyan maize line, CON 5, and the Brazilian standard for tolerance, Cateto, exhibited the greatest Al tolerance based on RNRG, but CON 5 had only about 50 % of ZmMATE1 gene expression relative to Cateto. CON 5 also had low root apex Al content and high citrate exudation, suggesting that it may employ a citrate transporter other than ZmMATE1.


We identified a very Al tolerant Kenyan maize line whose Al tolerance may be based in part on a novel tolerance gene. The maize lines identified in this study are useful germplasm for the development of varieties suitable for agriculture on acid soils in Kenya.


Aluminum toxicity Aluminum tolerance Root apex aluminum concentration Root citrate exudation 



The authors wishes to acknowledge the Generation Challenge Program (GCP) and McKnight Foundation for funding, Moi University for facilities and technical support, the USDA-ARS Robert Holley Center for Agriculture and Health for the mentoring of the first author and the provision of laboratory and technical support. We also wish to thank Drs. Lyza Maron and Michael Rutzke for their technical expertise and to Eric Craft for having worked tirelessly to ensure all the resources were available for use in the testing laboratory. Special thanks go to KARI–Kitale for providing some of the seed for Kenyan accessions.

Supplementary material

11104_2013_1976_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 34 kb)
11104_2013_1976_MOESM2_ESM.docx (26 kb)
ESM 2 (DOCX 25 kb)


  1. Ahlrichs JL, Karr MC, Baligar VC, Wright RJ (1990) Rapid bioassay of aluminum toxicity in soil. Plant Soil 122:279–285CrossRefGoogle Scholar
  2. Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol 132:2205–2217PubMedCentralPubMedCrossRefGoogle Scholar
  3. Cancado GMA, Loguercio LL, Martins PR, Parentoni SN, Paiva E, Borẽm A, Lopes MA (1999) Haematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L). Theor Appl Genet 99:747–754CrossRefGoogle Scholar
  4. Collet L, De-Leon C, Kollmeier M, Schmohl N, Horst WJ (2002) Assessment of aluminum sensitivity of maize cultivars using roots of intact plants and excised root tips. J Plant Nutr Soil Sci 165:357–365CrossRefGoogle Scholar
  5. De la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568PubMedCrossRefGoogle Scholar
  6. Delhaize E, Craig S, Beaton CD, Benett RJ, Jagadish VC, Randall PJ (1993) Al tolerance in wheat (Triticum aestivum L.): Uptake and distribution of Al in root apices. Plant Physiol 103:685–693PubMedCentralPubMedGoogle Scholar
  7. Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminum resistance and mineral nutrition. FEBS Lett 581:2255–2262PubMedCrossRefGoogle Scholar
  8. Donswel CR, Paliwal RL, Constrel RP (1996) Maize in the third world. Westview Press, BoulderGoogle Scholar
  9. Duque-Vargas J, Pandey S, Ceballos H, Knapp E (1994) Inheritance of tolerance to soil acidity in tropical maize. Crop Sci 34:50–54CrossRefGoogle Scholar
  10. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Kazuyoshi T, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091PubMedCrossRefGoogle Scholar
  11. Hoekenga OA, Maron LG, Piñeros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. PNAS 103:9738–9743PubMedCentralPubMedCrossRefGoogle Scholar
  12. Kanyanjua SM, Ireri L, Wambua S and Nandwa SM (2002) Acidic soils in Kenya: Constraints and remedial options. KARI Technical Note No. 11Google Scholar
  13. Khan AA, McNeilly T (1998) Variability in aluminum and manganese tolerance among maize accessions. Genet Resour Crop Ev 45:525–531CrossRefGoogle Scholar
  14. Kidd PS, Proctor J (2000) Effects of aluminum on the growth and mineral composition of Betula pendula Roth. J Expt Botany 51(347):1057–1066CrossRefGoogle Scholar
  15. Kochian LV (1995) Cellular mechanisms of Al toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260CrossRefGoogle Scholar
  16. Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Ann Rev Plant Biol 55:459–493CrossRefGoogle Scholar
  17. Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics, and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195CrossRefGoogle Scholar
  18. Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Over-expression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol 41:1030–1037PubMedCrossRefGoogle Scholar
  19. Larsen PB, Degenhardt J, Tai CY, Stenzler LM, Howell SH, Kochian LV (1998) Aluminum–resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117:9–18PubMedCentralPubMedCrossRefGoogle Scholar
  20. Ligeyo OD (2007) Evaluation of Kenyan maize germplasm for tolerance to Al toxicity and phosphorus deficiency. PhD. Thesis Moi University, EldoretGoogle Scholar
  21. Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399PubMedCrossRefGoogle Scholar
  22. Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252PubMedCrossRefGoogle Scholar
  23. Magalhaes JV, Liu J, Guimarães CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genet 39:1156–1161PubMedCrossRefGoogle Scholar
  24. Magnavaca R, Gardener CO, Clark RB (1987) Evaluation of maize inbred lines for Al tolerance in nutrient solution. In: Gabelman HW, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Martinus Nijhoff, Dordrecht, pp 255–265CrossRefGoogle Scholar
  25. Maron LG, Pineros MA, Guimarães CT, Magalhaes JV, Pleiman JK, Mao C, Shaff J, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multidrug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61:728–740PubMedCrossRefGoogle Scholar
  26. Maron LG, Guimarães CT, Kirst M, Alber PS, Birchler JA, Bradbury PJ, Buckler ES, Coluccio AE, Danilova TV, Kudrnag D, Magalhaes JV, Piñeros MA, Schatzh MC, Wing RA, Kochian LV (2013) Aluminum tolerance in maize is associated with higher MATE1 gene copy-number. PNAS 110:5241–5246PubMedCentralPubMedCrossRefGoogle Scholar
  27. Muhammad L, Underwood E (2004) The maize agricultural context in Kenya. In: Andow DA, Hilbeck A (eds) Risk assessment of genetically modified organisms. A case study of Bt Maize in Kenya, vol 1. CABI Publishing, Wallingford, pp 21–56CrossRefGoogle Scholar
  28. Obura PA (2008) Effects of soil properties on bioavailability of aluminum and phosphorus in selected Kenyan and Brazilian acid soils. Dissertation, Purdue UniversityGoogle Scholar
  29. Okalebo JR, Simpson JR, Okwach EG, Probert ME, McCown RL (1997) Conservation of soil fertility under intensive maize cropping in semi arid Eastern Kenya. Afr Crop Sci J 3:429–438Google Scholar
  30. Oluoch-Kosura W (1999) Intensification: Best option for Agricultural growth in Kenya. Agriforum 9:9–11Google Scholar
  31. Pandey S, Ceballos H, Magnavaca R, Bahia AFC, Duque-Vargas J, Vinasco LE (1994) Genetics of tolerance to soil fertility in tropical maize. Crop Sci 34:1511–1514CrossRefGoogle Scholar
  32. Piñeros MA, Shaff JE, Manslank CVMA, Kochian LV (2005) Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol 137:231–241PubMedCentralPubMedCrossRefGoogle Scholar
  33. Pinto J, Barloy J, Fallavier P (1999) Effects of Low Al activity in nutrient solutions on the organic acid concentrations in maize plants. J Plant Nutr 20:601–611CrossRefGoogle Scholar
  34. Polle EA, Konzak AF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by haematoxylin staining of seedling roots. Crop Sci 18:823–827CrossRefGoogle Scholar
  35. Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminum toxicity and resistance in plants. Sci Total Environ 400:356–368PubMedCrossRefGoogle Scholar
  36. Rincon M, Gonzales R (1992) Al partitioning intact roots of Al tolerant and Al sensitive wheat (Triticum aestivum L.) cultivars. Plant Physiol 99:1021–1028PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ruiz-Torres NA, Carver BF, Westerman RL (1992) Agronomic performance in acid soils of wheat lines selected for haematoxylin staining pattern. Crop Sci 32:104–107CrossRefGoogle Scholar
  38. Sasaki T, Yamamoto T, Ezaki BB, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an Al activated malate transporter. Plant J 37:645–653PubMedCrossRefGoogle Scholar
  39. Shaff JE, Schultz BA, Craft EJ, Clark RT, Kochian LV (2010) GEOCHEM-EZ: A chemical speciation program with greater power and flexibility. Plant Soil 330:207–214CrossRefGoogle Scholar
  40. Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW (2000) Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123:543–552PubMedCentralPubMedCrossRefGoogle Scholar
  41. Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Over-expression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844PubMedCentralPubMedCrossRefGoogle Scholar
  42. Tice KR, Parker DR, De-Mason DA (1992) Operationally defined apoplastic and symplastic aluminum fraction in root tips of aluminum–intoxicated wheat. Plant Physiol 100:309–319PubMedCentralPubMedCrossRefGoogle Scholar
  43. Urrea-Gomez R, Ceballos H, Pandey S, Bahia AFC, Leon KA (1996) A greenhouse screening technique for acid tolerance in maize. Agron J 88:806–812CrossRefGoogle Scholar
  44. Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Raymet GE, Probert ME (eds) Plant-Soil Interactions at low pH: Principles and management. Kluwer Academic Publishers, Dordrecht, pp 5–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V.(outside the USA) 2014

Authors and Affiliations

  • T. K. Matonyei
    • 1
  • R. K. Cheprot
    • 1
  • J. Liu
    • 2
  • M. A. Piñeros
    • 2
  • J. E. Shaff
    • 2
  • S. Gudu
    • 3
  • B. Were
    • 3
  • J. V. Magalhaes
    • 4
  • L. V. Kochian
    • 2
  1. 1.University of EldoretEldoretKenya
  2. 2.Robert Holley Center for Agriculture and Health USDA-ARSCornell UniversityIthacaUSA
  3. 3.Rongo University CollegeRongoKenya
  4. 4.Embrapa Maize and SorghumSete LagoasBrazil

Personalised recommendations