Advertisement

Plant and Soil

, Volume 376, Issue 1–2, pp 165–175 | Cite as

Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas

  • Stephanie J. Watts-Williams
  • Terence W. Turney
  • Antonio F. Patti
  • Timothy R. Cavagnaro
Regular Article

Abstract

Background and Aims

Water solubility of zinc (Zn) fertilisers affects their plant availability. Further, simultaneous application of Zn and phosphorus (P) fertiliser can have antagonistic effects on plant Zn uptake. Arbuscular mycorrhizas (AM) can improve plant Zn and P uptake. We conducted a glasshouse experiment to test the effect of different Zn fertiliser materials, in conjunction with P fertiliser application, and colonisation by AM, on plant nutrition and biomass.

Methods

We grew a mycorrhiza-defective tomato genotype (rmc) and its mycorrhizal wild-type progenitor (76R) in soil with six different Zn fertilisers ranging in water solubility (Zn sulphate, Zn oxide, Zn oxide (nano), Zn phosphate, Zn carbonate, Zn phosphate carbonate), and supplemental P. We measured plant biomass, Zn and P contents, mycorrhizal colonisation and water use efficiency.

Results

Whereas water solubility of the Zn fertilisers was not correlated with plant biomass or Zn uptake, plant Zn and P contents differed among Zn fertiliser treatments. Plant Zn and P uptake was enhanced when supplied as Zn phosphate carbonate. Mycorrhizal plants took up more P than non-mycorrhizal plants; the reverse was true for Zn.

Conclusions

Zinc fertiliser composition and AM have a profound effect on plant Zn and P uptake.

Keywords

Zinc fertiliser Phosphorus fertiliser Arbuscular mycorrhizas (AM) Water use efficiency Mycorrhiza defective tomato mutant (rmcSolanum lycopersicum (Tomato) 

Notes

Acknowledgments

The authors wish to thank Dr. Jessica Drake and other members of the ‘Cav-Lab’ for valuable discussions. We also gratefully acknowledge A/Prof. Susan Barker and Prof. Sally Smith for continued access to the rmc and 76R genotypes of tomato. This research was in part funded by the Monash University, School of Biological Sciences. TRC also wishes to acknowledge the Australian Research Council for financial support (FT120100463).

References

  1. Al-Karaki GN (1998) Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza 8(1):41–45. doi: 10.1007/s005720050209 CrossRefGoogle Scholar
  2. Alloway BJ (2008) Zinc in soils and crop nutrition.Google Scholar
  3. Amrani M, Westfall DG, Peterson GA (1999) Influence of water solubility of granular zinc fertilizers on plant uptake and growth. Journal of Plant Nutrition 22(12):1815–1827. doi: 10.1080/01904169909365758 CrossRefGoogle Scholar
  4. Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81(1–4):343–351. doi: 10.1023/a:1020588701325 PubMedCrossRefGoogle Scholar
  5. Barker SJ, Stummer B, Gao L, Dispain I, O’Connor PJ, Smith SE (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. Plant Journal 15(6):791–797. doi: 10.1046/j.1365-313X.1998.00252.x CrossRefGoogle Scholar
  6. Barrow NJ (1987) The effects of phosphate on zinc sorption by a soil. Journal of Soil Science 38(3):453–459CrossRefGoogle Scholar
  7. Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere 50(6):831–837. doi: 10.1016/s0045-6535(02)00227-8 PubMedCrossRefGoogle Scholar
  8. Boawn LC, Viets FG, Crawford CL (1957) Plant utilization of zinc from various types of zinc compounds and fertilizer materials. Soil Science 83(3):219–228CrossRefGoogle Scholar
  9. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytologist 173(4):677–702. doi: 10.1111/j.1469-8137.2007.01996.x PubMedCrossRefGoogle Scholar
  10. Burleson CA, Dacus AD, Gerard CJ (1961) The effect of phosphorus fertilization on the zinc nutrition of several irrigated Crops1. Soil Science Society of America Journal 25(5):365–368. doi: 10.2136/sssaj1961.03615995002500050018x CrossRefGoogle Scholar
  11. Cakmak I (2002) Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant and Soil 247(1):3–24. doi: 10.1023/a:1021194511492 CrossRefGoogle Scholar
  12. Cakmak I (2008) Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil 302(1–2):1–17. doi: 10.1007/s11104-007-9466-3 Google Scholar
  13. Cakmak I, Marschner H (1987) Mechanism of phosphorus-induced zinc-deficiency in cotton. 3. Changes in physiological availability of zinc in plants. Physiologia Plantarum 70(1):13–20. doi: 10.1111/j.1399-3054.1987.tb08690.x CrossRefGoogle Scholar
  14. Cavagnaro TR, Martin AW (2011) Arbuscular mycorrhizas in southeastern Australian processing tomato farm soils. Plant and Soil 340(1–2):327–336. doi: 10.1007/s11104-010-0603-z CrossRefGoogle Scholar
  15. Cavagnaro TR, Smith FA, Lorimer MF, Haskard KA, Ayling SM, Smith SE (2001) Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum. New Phytologist 149(1):105–113. doi: 10.1046/j.1469-8137.2001.00001.x CrossRefGoogle Scholar
  16. Cavagnaro TR, Dickson S, Smith FA (2010) Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant and Soil 329(1–2):307–313. doi: 10.1007/s11104-009-0158-z CrossRefGoogle Scholar
  17. Chen BD, Shen H, Li XL, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil 261(1–2):219–229CrossRefGoogle Scholar
  18. Colwell J (1963) The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Australian Journal of Experimental Agriculture 3(10):190–197CrossRefGoogle Scholar
  19. Diaz G, AzconAguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant and Soil 180(2):241–249. doi: 10.1007/bf00015307 CrossRefGoogle Scholar
  20. Fageria NK (2010) Zinc. In: The Use of Nutrients in Crop Plants. CRC Press, Boca Raton, FL, pp 241–271.Google Scholar
  21. Gildon A, Tinker PB (1983) Interactions of vesicular arbuscular mycorrhizal infection and heavy metals in plants. 1. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytologist 95(2):247–261. doi: 10.1111/j.1469-8137.1983.tb03491.x CrossRefGoogle Scholar
  22. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84(3):489–500CrossRefGoogle Scholar
  23. Goh TB, Banerjee MR, Tu SH, Burton DL (1997) Vesicular arbuscular mycorrhizae-mediated uptake and translocation of P and Zn by wheat in a calcareous soil. Canadian Journal of Plant Science 77(3):339–346CrossRefGoogle Scholar
  24. Graham RD, Welch RM (1997) A strategy for breeding staple-food crops with high micronutrient density. Trace Elements in Man and Animals 9:447–450Google Scholar
  25. Grewal HS (2010) Fertiliser management for higher productivity of established lucerne pasture. New Zealand Journal of Agricultural Research 53(4):303–314. doi: 10.1080/00288233.2010.524225 CrossRefGoogle Scholar
  26. Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant and Soil 253(2):287–292. doi: 10.1023/a:1024843419670 CrossRefGoogle Scholar
  27. Khan HR, McDonald GK, Rengel Z (2003) Zn fertilization improves water use efficiency, grain yield and seed Zn content in chickpea. Plant and Soil 249(2):389–400. doi: 10.1023/a:1022808323744 CrossRefGoogle Scholar
  28. Lee YJ, George E (2005) Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant and Soil 278(1–2):361–370. doi: 10.1007/s11104-005-0373-1 CrossRefGoogle Scholar
  29. Li XL, George E, Marschner H (1991) Phosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist 119(3):397–404. doi: 10.1111/j.1469-8137.1991.tb00039.x CrossRefGoogle Scholar
  30. Lide DR (1990) CRC handbook of chemistry and physics: A ready-reference book of chemical and phyical data. 71st edn. CRC Press, pp. B-143-145.Google Scholar
  31. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42(3):421–428CrossRefGoogle Scholar
  32. Loneragan JF, Webb MJ (1993) Interactions between zinc and other nutrients affecting the growth of plants. Zinc in Soils and Plants 55:119–134CrossRefGoogle Scholar
  33. Loneragan JF, Grove TS, Robson AD, Snowball K (1979) Phosphorus toxicity as a factor in zinc-phosphorus interactions in plants. Soil Science Society of America Journal 43(5):966–972CrossRefGoogle Scholar
  34. Marschner H (1993) Zinc uptake from soils, vol 55. Zinc in Soils and Plants. Kluwer Academic Publ, DordrechtGoogle Scholar
  35. Marschner H (1995). Mineral Nutrition of Higher Plants.Google Scholar
  36. Martin A (2007) The role of arbuscular mycorrhizal fungi in sustainable tomato production. The University of Adelaide, AdelaideGoogle Scholar
  37. Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. Journal of Agricultural and Food Chemistry 60(16):3991–3998. doi: 10.1021/jf205191y PubMedCrossRefGoogle Scholar
  38. Mohammad MJ, Pan WL, Kennedy AC (2005) Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root. Mycorrhiza 15(4):259–266. doi: 10.1007/s00572-004-0327-0 PubMedCrossRefGoogle Scholar
  39. Mortvedt JJ (1992) Crop response to level of water-soluble zinc in granular zinc fertilizers. Fertil Res 33(3):249–255. doi: 10.1007/bf01050880 CrossRefGoogle Scholar
  40. Mortvedt JJ, Gilkes RJ (1993) Zinc fertilizers. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic Publishers, pp 33–45.Google Scholar
  41. Ortas I (2012) Do maize and pepper plants depend on mycorrhizae in terms of phosphorus and zinc uptake? Journal of Plant Nutrition 35(11):1639–1656. doi: 10.1080/01904167.2012.698346 CrossRefGoogle Scholar
  42. Ortas I, Ortakci D, Kaya Z, Cinar A, Onelge N (2002) Mycorrhizal dependency of sour orange in relation to phosphorus and zinc nutrition. Journal of Plant Nutrition 25(6):1263–1279. doi: 10.1081/pln-120004387 CrossRefGoogle Scholar
  43. Perrin R (1990) Interactions between mycorrhizae and diseases caused by soil-borne fungi. Soil Use Manage 6(4):189–195. doi: 10.1111/j.1475-2743.1990.tb00834.x CrossRefGoogle Scholar
  44. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:158CrossRefGoogle Scholar
  45. Poulton JL, Bryla D, Koide RT, Stephenson AG (2002) Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytologist 154(1):255–264. doi: 10.1046/j.1469-8137.2002.00366.x CrossRefGoogle Scholar
  46. Rengel Z (1999) Physiological mechanisms underlying differential nutrient efficiency of crop genotypes. Mineral nutrition of crops: Fundamental mechanisms and implications. The Haworth Press, New YorkGoogle Scholar
  47. Robson AD, Pitman MG (1983) Interactions between nutrients in higher plants. In: Lauchli A, Bieleski RL (eds) Encyclopedia plant physiology new series, vol 15A. Springer, Berlin, pp 147–180Google Scholar
  48. Ryan MH, Small DR, Ash JE (2000) Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Australian Journal of Experimental Agriculture 40(5):663–670. doi: 10.1071/ea99005 CrossRefGoogle Scholar
  49. Ryan MH, McInerney JK, Record IR, Angus JF (2008) Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. Journal of the Science of Food and Agriculture 88(7):1208–1216. doi: 10.1002/jsfa.3200 CrossRefGoogle Scholar
  50. Shaver TM, Westfall DG, Ronaghi M (2007) Zinc fertilizer solubility and its effects on zinc bioailability over time. Journal of Plant Nutrition 30(1):123–133. doi: 10.1080/01904160601055145 CrossRefGoogle Scholar
  51. Shivay YS, Kumar D, Prasad R, Ahlawat IPS (2008) Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coatings onto urea. Nutrient Cycling in Agroecosystems 80(2):181–188. doi: 10.1007/s10705-007-9131-5 CrossRefGoogle Scholar
  52. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New YorkGoogle Scholar
  53. Turney TW, Duriska MB, Jayaratne V, Elbaz A, O’Keefe SJ, Hastings AS, Piva TJ, Wright PFA, Feltis BN (2012) Formation of zinc-containing nanoparticles from Zn2+ ions in cell culture media: Implications for the nanotoxicology of ZnO. Chemical Research in Toxicology 25(10):2057–2066. doi: 10.1021/tx300241q PubMedCrossRefGoogle Scholar
  54. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157(3):423–447. doi: 10.1046/j.1469-8137.2003.00695.x CrossRefGoogle Scholar
  55. Verma TS, Minhas RS (1987) Zinc and phosphorus interaction in a wheat-maize cropping system. Fertil Res 13(1):77–86. doi: 10.1007/bf01049804 CrossRefGoogle Scholar
  56. Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and Environmental Microbiology 64(12):5004–5007PubMedCentralPubMedGoogle Scholar
  57. Waite Analytical Services. http://www.adelaide.edu.au/was. Accessed 6 June 2013.
  58. Watts-Williams S, Cavagnaro T (2012) Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biology and Fertility of Soils 48(3):285–294. doi: 10.1007/s00374-011-0621-x CrossRefGoogle Scholar
  59. Watts-Williams SJ, Patti AF, Cavagnaro TR (2013) Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant and Soil 371(1–2):299–312. doi: 10.1007/s11104-013-1670-8 CrossRefGoogle Scholar
  60. Whiting SN, Leake JR, McGrath SP, Baker AJM (2001) Zinc accumulation by Thlaspi caerulescens from soils with different Zn availability: A pot study. Plant and Soil 236(1):11–18. doi: 10.1023/a:1011950210261 CrossRefGoogle Scholar
  61. Zar JH (2007) Biostatistical analysis. Fifth edn, Prentice-Hall IncGoogle Scholar
  62. Zhang YQ, Deng Y, Chen RY, Cui ZL, Chen XP, Yost R, Zhang FS, Zou CQ (2012) The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant and Soil 361(1–2):143–152. doi: 10.1007/s11104-012-1238-z CrossRefGoogle Scholar
  63. Zhu YG, Christie P, Laidlaw AS (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42(2):193–199. doi: 10.1016/s0045-6535(00)00125-9 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Stephanie J. Watts-Williams
    • 1
  • Terence W. Turney
    • 2
    • 3
  • Antonio F. Patti
    • 2
  • Timothy R. Cavagnaro
    • 1
    • 4
  1. 1.School of Biological SciencesMonash UniversityClaytonAustralia
  2. 2.School of ChemistryMonash UniversityClaytonAustralia
  3. 3.Department of Materials EngineeringMonash UniversityClaytonAustralia
  4. 4.School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations