Plant and Soil

, Volume 374, Issue 1–2, pp 643–659 | Cite as

Soil organic C and nutrient contents under trees with different functional characteristics in seasonally dry tropical silvopastures

  • Pere Casals
  • Johanna Romero
  • Graciela M. Rusch
  • Muhammad Ibrahim
Regular Article



The selection of tree characteristics is critical for the outcome of the tree effects on soil fertility in silvopastoral pastures. This study aims to quantify the effects of trees on soil nutrient and C stocks, as well as assessing differences on the effects between legume (Albizia saman; Enterolobium cyclocarpum) and non-legume tree species (Tabebuia rosea; Guazuma ulmifolia).


In Central Nicaragua, soil was sampled (0–10 cm deep) in paired plots, under both a canopy and in open grassland, in 12 sites per tree species and analysed for organic C, total N stocks, available P and extractable K+, Ca2+ and Mg2+. To assess the effects of herbaceous composition and cattle to soil proprieties, we recorded the cover of plant groups and assessed the mass of dung in each plot.


Soil organic C and N, available P and extractable K+ and Ca2+ were higher under the tree canopy than under paired open grassland. The basal area of trees was positively related with the canopy effect on soil variables, thus suggesting that the age or sizes of the trees are relevant factors associated with the content of soil C and nutrients. No specific effects related to the legume species group were detected.


Our results indicate that in fertile seasonally dry subtropical pastures, scattered trees have an overall effect on soil fertility, and that the magnitude of the effect depends more on the tree characteristics (i.e. basal area, crown area) than on whether the species is a legume or not.


Legume functional group Silvopastoral systems Soil nutrient stocks Tree-grass interactions Tree leaf traits 



This research was supported by the SILPAS project (funded by the Research Council of Norway, programme LAND, grant no. 184065/S30). We wish to thank the farmers in Muy Muy and Matiguás who kindly facilitated access to the study sites, as well as Hamilton Núñez, Nestor Pineda and Amilcar Aguilar (CATIE, Nicaragua) for their technical assistance in the field. Andreas Nieuwenhuyse (CATIE), Pere Rovira, Joan Romanyà and Noelia Arco (University of Barcelona) helped with the laboratory analysis and interpretation of the results. The first author (PC) is financially supported by a Ramón y Cajal Contract (Ministerio de Economía y Competitividad, Spain).


  1. Alfaia SS, Ribeiro GA, Nobre AD, Luizao RC, Luizao FJ (2004) Evaluation of soil fertility in smallholder agroforestry systems and pastures in western Amazonia. Agr Ecosyst Environ 102:409–414CrossRefGoogle Scholar
  2. Andrade H, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308:11–22CrossRefGoogle Scholar
  3. Belsky AJ, Mwonga SM, Duxbury JM (1993) Effects of widely spaced trees and livestock grazing on understory environments in tropical savannas. Agrofor Syst 24:1–20CrossRefGoogle Scholar
  4. Campo J, Jaramillo VJ, Maass JM (1998) Pulses of soil phosphorus availability in a Mexican tropical dry forest: effects of seasonality and level of wetting. Oecologia 115:167–172CrossRefGoogle Scholar
  5. Campo J, Maass JM, Jaramillo VJ, Martínez-Yrízar A (2000) Calcium, potassium, and magnesium cycling in a Mexican tropical dry forest ecosystem. Biogeochem 49:21–36CrossRefGoogle Scholar
  6. Campo J, Maass JM, Jaramillo VJ, Martínez-Yrízar A, Sarukhán J (2001) Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochem 53:161–179CrossRefGoogle Scholar
  7. Casals P, Gimeno C, Carrara A, Lopez-Sangil L, Sanz MJ (2009) Soil CO2 efflux and extractable organic carbon fractions under simulated precipitation events in a Mediterranean Dehesa. Soil Biol Biochem 41:1915–1922CrossRefGoogle Scholar
  8. Cordero J, Boshier DH (eds) (2003) Árboles de Centroamérica: un manual para extensionistas. Oxford Forestry Institute/CATIE, TurrialbaGoogle Scholar
  9. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JAL, Read J, Reich P, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071PubMedCrossRefGoogle Scholar
  10. Craine JM (2009) Resource strategies of wild plants. Princeton Univ. Press, PrincetonGoogle Scholar
  11. Esquivel MJ, Harvey C, Finegan B, Casanoves F, Skarpe C (2008) Effects of pasture management on the natural regeneration of neotropical trees. Appl Ecol 45:371–380CrossRefGoogle Scholar
  12. Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework from predicting multiple plant effects on ecosystem processes. Ann Rev Ecol Syst 34:455–485CrossRefGoogle Scholar
  13. Galicia L, García-Oliva F (2004) The effects of C, N and P additions on soil microbial activity under two remnant tree species in a tropical seasonal pasture. Appl Soil Ecol 26:31–39CrossRefGoogle Scholar
  14. Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrient in a Mediterranean Dehesa. Pedobiologia 47:117–125CrossRefGoogle Scholar
  15. García-Oliva F, Sveshtarova B, Oliva M (2003) Seasonal effects on soil organic carbon dynamics in a tropical deciduous forest ecosystem in Western Mexico. J Trop Ecol 19:179–188Google Scholar
  16. Hanson PJ, Lindberg SE (1991) Dry deposition of reactive nitrogen compounds: a review of leaf, canopy and non-foliar measurements. Atmos Environ 25:1615–1634CrossRefGoogle Scholar
  17. Harvey CA, Haber WA (1999) Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agroforest Syst 44:37–68CrossRefGoogle Scholar
  18. Harvey CA, Villanueva C, Villacís J, Chacón M, Muñoz D, López M, Ibrahim M, Taylor R, Martínez JL, Navas A, Sáenz J, Sánchez D, Medina A, Vílchez S, Hernández B, Pérez A, Ruíz F, López F, Lang I, Kunth S, Sinclair FL (2005) Contribution of live fences to the ecological integrity of agricultural landscapes in Central America. Agric Ecosyst Environ 111:200–230CrossRefGoogle Scholar
  19. Jobbágy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389CrossRefGoogle Scholar
  20. Keeney DR (1982) Nitrogen. Availability indices. In: ASA-SSSA (ed) Methods of soil analysis, Part 2. Chemical and Microbial Properties, Madison, pp 711–722Google Scholar
  21. Kumar BM (2008) Litter dynamics in plantation and agroforestry systems. In: Batish DR, Kohli RK, Singh HP, Jose S (eds) Ecological basis of agroforestry. CRC Press, Boca Raton, pp 181–216Google Scholar
  22. Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, Bartels JM, Bigham JM (eds) Methods of soil analysis. Part 3. Chemical Methods, Madison, pp 869–919Google Scholar
  23. Lax A, Roig A, Costa F (1986) A method for determining the cation-exchange capacity of organic materials. Plant Soil 94:349–355CrossRefGoogle Scholar
  24. Luizão FJ, Proctor J, Thompson J, Luizão RCC, Marrs RH, Scott DA, Viana V (1998) Rain forest on Maraca Island, Roraima, Brazil: soil and litter process response to artificial gaps. Forest Ecol Manage 102:291–303CrossRefGoogle Scholar
  25. Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures—Implication for conservation. Biol Conserv 132:311–321CrossRefGoogle Scholar
  26. McKey D (1994) Legumes and nitrogen: The evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent JI, McKey D (eds) Advances in Legume Systematics 5: The Nitrogen Factor. Royal Botanic Gardens, Kew, pp 211–228Google Scholar
  27. Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Comm Soil Sci Plant An 15:1409–1416CrossRefGoogle Scholar
  28. Mordelet P, Abbadie L, Menaut JC (1993) Effects of tree clumps on soil characteristics in a humid savannah of West Africa (Lamto, Cote d’Ivoire). Plant Soil 153:103–111CrossRefGoogle Scholar
  29. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  30. Ospina S (2011) Linking plant strategies and ecosystem function: an assessment of the contribution of biodiversity to Neotropical grassland productivity. Dissertation, Tropical Agriculture Research and Higher Education Centre (CATIE) and Bangor UniversityGoogle Scholar
  31. Ospina S, Rusch GM, Pezo DA, Casanoves F, Sinclair FL (2012) More stable productivity of semi natural grasslands than sown pastures in a seasonally dry climate. PLoS ONE 7(5):e35555. doi: 10.1371/journal.pone.0035555 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Palm CA, Sánchez PA (1991) Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biol Biochem 23:83–88CrossRefGoogle Scholar
  33. Powers RF (1980) Mineralizable soil nitrogen as an index of nitrogen availability to forest trees. Soil Sci Soc Am J 44:1314–1320CrossRefGoogle Scholar
  34. Reich JA, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology letters 8:811–818CrossRefGoogle Scholar
  35. Reis GL, Quintão Lana ÂM, Martins Maurício R, Quintão Lana RM, Matta Machado R, Borges I, Quinzeiro Neto T (2010) Influence of trees on soil nutrient pools in a silvopastoral system in the Brazilian Savannah. Plant Soil 329:185–193CrossRefGoogle Scholar
  36. Rhoades CC (1997) Single-tree influences on soil properties in agro-forestry: lessons from natural forest and savanna ecosystems. Agroforest Syst 35:71–94CrossRefGoogle Scholar
  37. Sáenz J, Villatro F, Ibrahim M (2006) Relación entre las comunidades de aves y la vegetación en agropaisajes dominados por la ganadería en Costa Rica, Nicaragua y Colombia. Agroforestería en las Américas 45:37–48Google Scholar
  38. Sánchez Merlos D, Harvey CA, Grijalva A, Medina A, Vílchez S, Hernández B (2005) Diversidad, composición y estructura de la vegetación en un agropaisaje ganadero en Matiguás, Nicaragua. Rev Biol Trop 53:387–414Google Scholar
  39. Sandoval I (2006) Producción de hojarasca y reciclaje de nutrientes de dos especies arbóreas y dos gramíneas en pasturas de Muy Muy, Nicaragua. Master of Science, CATIE, TurrialbaGoogle Scholar
  40. Skarpe C (1991) Spatial patterns and dynamics of woody vegetation in an arid Savanna. J Veg Sci 2:565–572CrossRefGoogle Scholar
  41. Soon YK, Abboud S (1991) A comparison of some methods for soil organic carbon determination. Commun Soil Sci Plant Anal 22:943–954CrossRefGoogle Scholar
  42. Souza de Abreu MH (2002) Contribution of trees to the control of heat stress in dairy cows and the financial viability of livestock farms in the humid tropics. Ph.D. Thesis. Turrialba, Costa Rica, CATIEGoogle Scholar
  43. Stevens WD, Ulloa UC, Pool A, Montiel OM, Arbaláez AL, Cuatia DM (eds) (2001) Flora de Nicaragua, Volume 1–3. Monographs in systematic botany from the Missouri Botanical Garden 85:1–965. Missouri Botanical Garden Press, Saint Louis, MissouriGoogle Scholar
  44. Toledo-Aceves T, García-Oliva F (2008) Effects of forest-pasture edge on C, N and P associated with Caesalpinia eriostachys, a dominant tree species in a tropical decidious forest in Mexico. Ecol Res 23:271–280CrossRefGoogle Scholar
  45. Vetaas OR (1992) Micro-site effects of trees and shrubs in dry Savannas. J Veg Sci 3:337–344CrossRefGoogle Scholar
  46. Waring SA, Bremner JM (1964) Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201:951–952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pere Casals
    • 1
  • Johanna Romero
    • 2
  • Graciela M. Rusch
    • 3
  • Muhammad Ibrahim
    • 2
  1. 1.Centre Tecnològic Forestal de Catalunya (CTFC)SolsonaSpain
  2. 2.Tropical Agricultural Research and Higher Education Center (CATIE)CartagoCosta Rica
  3. 3.Norwegian Institute for Nature Research (NINA)NorwayNorway

Personalised recommendations