Plant and Soil

, Volume 373, Issue 1–2, pp 455–469 | Cite as

Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration

  • Maxime Séleck
  • Jean-Philippe Bizoux
  • Gilles Colinet
  • Michel-Pierre Faucon
  • Arielle Guillaume
  • Pierre Meerts
  • Julien Piqueray
  • Grégory Mahy
Regular Article



Define the chemical factors structuring plant communities of three copper-cobalt outcrops (Tenke-Fungurume, Katangan Copperbelt, D. R. Congo) presenting extreme gradients.


To discriminate plant communities, 172 vegetation records of all species percentage cover were classified based on NMDS and the Calinski criterion. Soil samples were analyzed for 13 chemical factors and means compared among communities with ANOVA. Partial canonical correspondence analysis (pCCA) was used to determine amount of variation explained individually by each factor and site effect.


Seven communities were identified. Six of the studied communities were related to distinct sites. Site effect (6.0 % of global inertia) was identified as the most important factor related to plant communities’ variation followed by Cu (5.5 %), pH (3.6 %) and Co (3.5 %). Unique contribution of site effect (3.8 %) was higher than that of Cu (1.1 %) and Co (1.0 %).


In restoration, not only Cu and Co contents will be important to maintain vegetation diversity, attention should also be given to co-varying factors potentially limiting toxicity of metals: pH, organic matter, Ca and Mn. Physical parameters were also identified as important in the creation of adequate conditions for diverse communities. Further studies should focus on the effect of physical parameters and geology.


Endemics Environmental gradients Katanga (D. R. Congo) Metallophyte Mining pCCA (Partial Canonical Correspondance analysis) 



Tenke Fungurume Mining S.a.r.l. provided financial and logistic support to this study. Mr. Emile Kisimba helped with plant identification. Both travels realized for the present work have been made possible thanks to the financial intervention of the Conseil interuniversitaire de la Communauté française de Belgique-Commission Universitaire pour le Développement (CIUF-CUD). This work is part of the research project 2.4.582.09F funded by the FRS-FNRS and of the “Projet interuniversitaire ciblé” (Project REMEDLU) funded by the CUD. J.P. Bizoux is a postdoctoral researcher of the Belgian Fund for Scientific Research (FRS-FNRS). The authors are grateful to Emile Kisimba, Francois Malaisse and Peter Goldblatt for determinations. We are grateful to Dr. Robert Mills for language revision and relevant comments on the manuscript. We would also like to thank the reviewers for valuable comments on the manuscript.

Supplementary material

11104_2013_1819_MOESM1_ESM.docx (43 kb)
ESM 1 (DOCX 42 kb)


  1. Bamps P (1973–1993) Flore d’Afrique centrale (Zaïre-Rwanda-Burundi). Jardin Botanique National de Belgique, Meise, BelgiqueGoogle Scholar
  2. Bizoux JP, Brevers F, Meerts P, Graitson E, Mahy G (2004) Ecology and conservation of Belgian populations of Viola calaminaria, a metallophyte with a restricted geographic distribution. Belg J Bot 137:91–104Google Scholar
  3. Board of trustees Kew Royal Botanic Gardens (1960–2010) Flora Zambesiaca. Royal Botanic Gardens, Kew, Richmond, United KingdomGoogle Scholar
  4. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  5. Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeny DR (eds) Methods of soil analysis part 2 chemical and microbiological properties, 2nd edn. American Society of Agronomy and Soil Science Society of America, MadisonGoogle Scholar
  6. Brooks RR, Malaisse F (1985) The heavy metal-tolerant flora of South-central Africa—a multidisciplinary approach. Balkema, RotterdamGoogle Scholar
  7. Brooks RR, Baker AJM, Malaisse F (1992) Copper flowers. Res Explor 8:338–351Google Scholar
  8. Cailteux JLH, Kampunzu AB, Lerouge C, Kaputo AK, Milesi JP (2005) Genesis of sediment-hosted stratiform copper-cobalt deposits, central African Copperbelt. J Afr Earth Sci 42:134–158. doi: 10.1016/j.jafrearsci.2005.08.001 CrossRefGoogle Scholar
  9. Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3:1–27Google Scholar
  10. Chiarucci A, Baker AJM (2007) Advances in the ecology of serpentine soils. A selection of papers from the Fifth International Conference on Serpentine Ecology, Siena, Italy, 9–13 May 2006. Plant and Soil 293: 217 ppGoogle Scholar
  11. Chipeng F, Hermans C, Colinet G, Faucon M-P, Ngongo M, Meerts P, Verbruggen N (2010) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant Soil 328:235–244. doi: 10.1007/s11104-009-0105-z CrossRefGoogle Scholar
  12. Collins RN, Kinsela AS (2011) Pedogenic factors and measurements of the plant uptake of cobalt. Plant Soil 339:499–512. doi: 10.1007/s11104-010-0584-y CrossRefGoogle Scholar
  13. Conservatoire et Jardin botaniques de la Ville de Genève and South African National Biodiversity Institute - Pretoria (2013) African plants database. 3.4.0 edn, Genève, Switzerland - Pretoria, South AfricaGoogle Scholar
  14. Delecour F, Kindermans M (1977) Manuel de description des sols. FUSAGx, GemblouxGoogle Scholar
  15. Development Core Team R (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  16. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  17. Duvigneaud P (1958) La végétation du Katanga et des sols métallifères. Bull Soc R Bot Belg 90:127–286Google Scholar
  18. Duvigneaud P, Denayer-De Smet S (1963) Cuivre et végétation au Katanga. Bull Soc R Bot Belg 96:92–231Google Scholar
  19. Ernst W (1974) Schwermetallvegetation der Erde. G. Fischer, StuttgartGoogle Scholar
  20. Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36. doi: 10.1007/s11104-007-9405-3 CrossRefGoogle Scholar
  21. Faucon MP, Colinet G, Mahy G, Luhembwe MN, Verbruggen N, Meerts P (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317:201–212. doi: 10.1007/s11104-008-9801-3 CrossRefGoogle Scholar
  22. Faucon MP, Meersseman A, Shutcha MN, Mahy G, Luhembwe MN, Malaisse F, Meerts P (2010) Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol Evol 143:5–18. doi: 10.5091/plecevo.2010.411 CrossRefGoogle Scholar
  23. Faucon M-P, Parmentier I, Colinet G, Mahy G, Ngongo Luhembwe M, Meerts P (2011a) May rare metallophytes benefit from disturbed soils following mining activity? The case of the Crepidorhopalon tenuis in Katanga (D. R. Congo). Restor Ecol 19:333–343. doi: 10.1111/j.1526-100X.2009.00585.x CrossRefGoogle Scholar
  24. Faucon MP, Colinet G, Jitaru P, Verbruggen N, Shutcha M, Mahy G, Meerts P, Pourret O (2011b) Relation between cobalt fractionation and its accumulation in metallophytes from South of Central Africa. Mineral Mag 75:832Google Scholar
  25. Faucon M-P, Chipeng F, Verbruggen N, Mahy G, Colinet G, Shutcha M, Pourret O, Meerts P (2012) Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environ Exp Bot 84:11–16. doi: 10.1016/j.envexpbot.2012.04.012 CrossRefGoogle Scholar
  26. Francois A (1973) L’extrémité occidentale de l’Arc Cuprifère shabien. Gécamines, Likasi (Zaïre)Google Scholar
  27. Gough L, Grace JB (1999) Effects of environmental change on plant species density: comparing predictions with experiments. Ecology 80:882–890. doi: 10.1890/0012-9658(1999)080[0882:EOECOP]2.0.CO;2 CrossRefGoogle Scholar
  28. Harrison S (1997) How natural habitat patchiness affects the distribution of diversity in Californian serpentine chaparral. Ecology 78:1898–1906. doi: 10.1890/0012-9658(1997)078[1898:HNHPAT]2.0.CO;2 CrossRefGoogle Scholar
  29. Harrison S (1999) Local and regional diversity in a patchy landscape: native, alien, and endemic herbs on serpentine. Ecology 80:70–80CrossRefGoogle Scholar
  30. ICMM (2006) Good practice guidance for mining and biodiversity. ICMM, LondonGoogle Scholar
  31. Jacobi CM, do Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodivers Conserv 16:2185–2200. doi: 10.1007/s10531-007-9156-8 CrossRefGoogle Scholar
  32. Kabala C, Singh RR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492PubMedCrossRefGoogle Scholar
  33. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton, FL, USAGoogle Scholar
  34. Kalusova V, Le Duc MG, Gilbert JC, Lawson CS, Gowing DJG, Marrs RH (2009) Determining the important environmental variables controlling plant species community composition in mesotrophic grasslands in Great Britain. Appl Veg Sci 12:459–471CrossRefGoogle Scholar
  35. Kew Royal Botanical Gardens (1952–2008) Flora of tropical East Africa. In: Polhill RM (ed). Royal Boanic Gardens, Kew, UKGoogle Scholar
  36. Kirmer A, Tischew S, Ozinga WA, Von Lampe M, Baasch A, Van Groenendael JM (2008) Importance of regional species pools and functional traits in colonization processes: predicting re-colonization after large-scale destruction of ecosystems. J Appl Ecol 45:1523–1530. doi: 10.1111/j.1365-2664.2008.01529.x CrossRefGoogle Scholar
  37. Kruckeberg AR (1984) California serpentines: flora, vegetation, geology, soils, and management problems. University of California Press, BerkeleyGoogle Scholar
  38. Kruskal JB (1964a) Multidimensional scaling by optimizing goodness of fit to a non metric hypothesis. Psychometrika 29:1–27CrossRefGoogle Scholar
  39. Kruskal JB (1964b) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129CrossRefGoogle Scholar
  40. Lakanen E, Erviö R (1971) A comparaison of eight exctractants for the determination of plant available micronutrients in soils. Acta Agral Fenn 123:223–232Google Scholar
  41. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, AmsterdamGoogle Scholar
  42. Leteinturier B (2002) Evaluation du potentiel phytocénotique des gisements cuprifères d’Afrique centro-australe en vue de la phytoremédiation de sites pollués par l’activité minière. Faculté des Sciences Agronomiques de Gembloux, GemblouxGoogle Scholar
  43. Li Z, McLaren RG, Metherell AK (2001) Cobalt and manganese relationships in New Zealand soils. N Z J Agric Res 44:191–200CrossRefGoogle Scholar
  44. Li Z, McLaren RG, Metherell AK (2004) The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. N Z J Agric Res 47:33–43CrossRefGoogle Scholar
  45. Malaisse F (1995) Copper and vegetation in Shaba (Zaire). Bulletin des Seances Academie Royale des Sciences d’Outre-Mer 40:561–580Google Scholar
  46. Malaisse F, Colonval-Elenkov E, Brooks RR (1983) The impact of copper and cobalt orebodies upon the evolution of some plant species from Upper Shaba, Zaïre. Plant Syst Evol 142:207–221. doi: 10.1007/bf00985899 CrossRefGoogle Scholar
  47. McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  48. Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a dataset. Psychometrika 50:159–179CrossRefGoogle Scholar
  49. Morrison RS, Brooks RR, Reeves RD, Malaisse F (1979) Copper and cobalt uptake by metallophytes from Zaire. Plant Soil 53:535–539CrossRefGoogle Scholar
  50. O’Dell RE, James JJ, Richards JH (2006) Congeneric serpentine and nonserpentine shrubs differ more in leaf Ca:Mg than in tolerance of low N, low P, or heavy metals. Plant Soil 280:49–64. doi: 10.1007/s11104-005-3502-y CrossRefGoogle Scholar
  51. Oksanen JF (2010) Multivariate analysis of ecological communities in R: vegan tutorialGoogle Scholar
  52. Oksanen JF, Blanchet G, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: Community Ecology Package. 1.17-9 ednGoogle Scholar
  53. Párraga-Aguado I, González-Alcaraz MN, Álvarez-Rogel J, Jiménez-Cárceles FJ, Conesa HM (2013) The importance of edaphic niches and pioneer plant species succession for the phytomanagement of mine tailings. Environ Pollut 176:134–143. doi: 10.1016/j.envpol.2013.01.023 PubMedCrossRefGoogle Scholar
  54. Proctor J (1971) The plant ecology of serpentine. II. Plant response to serpentine soils. J Ecol 59:397–410CrossRefGoogle Scholar
  55. Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–366CrossRefGoogle Scholar
  56. Robinson BH, Brooks RR, Clothier BE (1999) Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann Bot 84:689–694. doi: 10.1006/anbo.1999.0970 CrossRefGoogle Scholar
  57. Saad L, Parmentier I, Colinet G, Malaisse F, Faucon M-P, Meerts P, Mahy G (2012) Investigating the vegetation-soil relationships on the copper-cobalt rock outcrops of Katanga (D. R. Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20:405–415. doi: 10.1111/j.1526-100X.2011.00786.x CrossRefGoogle Scholar
  58. Shepard RN (1962a) The analysis of proximities: multidimensional scaling with an unknown distance function I. Psychometrika 27:125–139CrossRefGoogle Scholar
  59. Shepard RN (1962b) The analysis of proximities: multidimensional scaling with an unknown distance function II. Psychometrika 27:219–246CrossRefGoogle Scholar
  60. Shutcha MN, Mubemba MM, Faucon M-P, Luhembwe MN, Visser M, Colinet G, Meerts P (2010) Phytostabilisation of copper-contaminated soil in Katanga: an experiment with three native grasses and two amendments. Int J Phytoremediat 12:616–632CrossRefGoogle Scholar
  61. Springer U, Klee J (1954) Prüfung der Leistungsfähigkeit von einigen wichtigeren Verfahren zur Bestimmung des Kohlenstoffs mittels Chromschwefelsäure sowie Vorschlag einer neuen Schnellmethode. Z Pflanzenernähr Düngung Bodenkd 64:1–26CrossRefGoogle Scholar
  62. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  63. ter Braak CJF (1988) Partial canonical correspondence analysis. In: Bock HH (ed) Classification and related methods of data analysis. North-Holland, Amsterdam, NLGoogle Scholar
  64. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY, USAGoogle Scholar
  65. Tichy L, Chytry M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818Google Scholar
  66. Tropek R, Kadlec T, Karesova P, Spitzer L, Kocarek P, Malenovsky I, Banar P, Tuf IH, Hejda M, Konvicka M (2010) Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J Appl Ecol 47:139–147. doi: 10.1111/j.1365-2664.2009.01746.x CrossRefGoogle Scholar
  67. Tsiripidis I, Papaioannou A, Sapounidis V, Bergmeier E (2010) Approaching the serpentine factor at a local scale-a study in an ultramafic area in northern Greece. Plant Soil 329:35–50. doi: 10.1007/s11104-009-0132-9 CrossRefGoogle Scholar
  68. Whiting SN, Reeves RD, Baker AJM (2002) Mining, metallophytes and land reclamation. Min Environ Manag 10:11–16Google Scholar
  69. Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffre T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116CrossRefGoogle Scholar
  70. Whittaker RH (1954) The ecology of serpentine soils. Ecology 35:258–288CrossRefGoogle Scholar
  71. Wild H, Bradshaw AD (1977) The evolutionary effects of metalliferous and other anomalous soils in South Central Africa. Evolution 31:282–293CrossRefGoogle Scholar
  72. Wolf AT, Harrison SP, Hamrick JL (2000) Influence of habitat patchiness on genetic diversity and spatial structure of a serpentine endemic plant. Conserv Biol 14:454–463CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maxime Séleck
    • 1
  • Jean-Philippe Bizoux
    • 1
  • Gilles Colinet
    • 2
  • Michel-Pierre Faucon
    • 3
  • Arielle Guillaume
    • 1
  • Pierre Meerts
    • 4
  • Julien Piqueray
    • 1
  • Grégory Mahy
    • 1
  1. 1.Department of Forest, Nature and Landscape, Biodiversity and Landscape UnitUniversity of LiègeGemblouxBelgium
  2. 2.Department of Science and Environmental Technology, Soil Science UnitUniversity of LiègeGemblouxBelgium
  3. 3.Hydrogeochemical Interactions Soil-Environment (HydrISE) UnitPolytechnic Institute LaSalle Beauvais (ISAB-IGAL)BeauvaisFrance
  4. 4.Laboratoire d’Ecologie végétale et BiogéochimieUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations