Plant and Soil

, Volume 373, Issue 1–2, pp 317–327 | Cite as

Root orientation can affect detection accuracy of ground-penetrating radar

  • Toko TanikawaEmail author
  • Yasuhiro Hirano
  • Masako Dannoura
  • Keitarou Yamase
  • Kenji Aono
  • Masahiro Ishii
  • Tetsurou Igarashi
  • Hidetoshi Ikeno
  • Yoichi Kanazawa
Regular Article



Ground-penetrating radar (GPR) has been applied to detect coarse tree roots. The horizontal angle of a root crossing a scanning line is a factor that affects both root detection and waveform parameter values. The purpose of this study was to quantitatively evaluate the influence of root orientation (x, degree) on two major waveform parameters, amplitude area (A, dB × ns) and time interval between zero crossings (T, ns).


We scanned four diameter classes of dowels in a sandy bed as simulated roots using a 900 MHz antenna from multiple angles to clarify the relationships between the parameters and x.


Angle x strongly affected reflection images and A values. The variation in A(x) fitted a sinusoidal waveform, whereas T was independent of x. The value of A scanning at 90° was estimated by A values of arbitrary x in two orthogonal transects. The sum of T in all reflected waveforms showed a significant linear correlation with dowel diameter.


We clarified that root orientation dramatically affected root detection and A values. The sum of T of all reflected waveforms was a suitable parameter for estimating root diameter. Applying grid transects can overcome the effects of root orientation.


Carbon storage Coarse root Grid transect Nondestructive root method Root angle Root diameter 



Ground-penetrating radar


Root angle subtended to the transecting lines


Amplitude area


Time interval between zero crossings


Sum of amplitude areas for all of reflection waveforms


Sum of time intervals for all reflection waveforms

Single Amax

Amplitude area of the maximum reflection waveform

Single Tmax

Time interval of the maximum reflection waveform



We thank D. Nomoto of KANSO Technos, N. Makita and R. Sasaki of Kyoto University, and U. Kurokawa, T. Chikaguchi, S. Narayama, M. Tanaka, and Y. Shimada and the other members of Kansai Research Center, Forestry and Forest Products Research Institute for their help with the field experiment. We additionally thank M. Ohashi for reading a draft of this manuscript. We acknowledge financial support from Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 22380090, 25252027). This study was also supported by the Program for Supporting Activities for Female Researchers funded by MEXT’s Special Coordination Fund for Promoting Science and Technology.


  1. Barton CM, Montagu KD (2004) Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol 24:1323–1331. doi: 10.1093/treephs/24.12.1323 PubMedCrossRefGoogle Scholar
  2. Brunner I, Godbold DL (2007) Tree roots in a changing world. J For Res 12:78–82. doi: 10.1007/s10310-006-0261-4 CrossRefGoogle Scholar
  3. Butnor JR, Doolittle JA, Kress L, Cohen S, Johnsen KH (2001) Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiol 21:1269–1278. doi: 10.1093/treephs/21.17.1269 PubMedCrossRefGoogle Scholar
  4. Butnor JR, Doolittle JA, Johnsen KH, Samuelson L, Stokes T, Kress L (2003) Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci Soc Am J 67:1607–1615. doi: 10.2136/sssaj2003.1607 CrossRefGoogle Scholar
  5. Butnor JR, Barton C, Day FP, Johnsen KH, Mucciardi AN, Schroeder R, Stover DB (2011) Using ground-penetrating radar to detect tree roots and estimate biomass. In: Mancuso S (ed) Measuring roots, an updated approach. Springer, Berlin, pp 213–245Google Scholar
  6. Cermák J, Hruska J, Martinkova M, Prax A (2000) Urban tree root systems and their survival near houses analyzed using ground penetrating radar and sap flow techniques. Plant Soil 219:1–2. doi: 10.1023/A:1004736310417 CrossRefGoogle Scholar
  7. Čermák J, Ulrich R, Staněk Z, Koller, Aubrecht L (2006) Electrical measurement of tree root absorbing surfaces by the earth impedance method: 2. Verification based on allometric relationships and root severing experiments. Tree Physiol 26:1113–1121. doi: 10.1093/treephys/26.9.1113 PubMedCrossRefGoogle Scholar
  8. Chow TL, Rees HW (1989) Identification of subsurface drain locations with ground-penetrating radar. Can J Soil Sci 69:223–234. doi: 10.4141/cjss89-023 CrossRefGoogle Scholar
  9. Cox KD, Scherm H, Serman N (2005) Ground-penetrating radar to detect and quantify residual root fragments following peach orchard clearing. Hort Technol 15:600–607Google Scholar
  10. Cui XH, Shen JS, Cao X, Chen XH, Zhu XL (2011) Modeling tree root diameter and biomass by ground-penetrating radar. Sci China Earth Sci 54:711–719. doi: 10/1007s11430-010-413-z CrossRefGoogle Scholar
  11. Dannoura M, Hirano Y, Igarashi T, Ishii M, Aono K, Yamase K, Kanazawa Y (2008) Detection of Cryptomeria japonica roots with ground penetrating radar. Plant Biosyst 142:375–380. doi: 10.1080/11263500802150951 CrossRefGoogle Scholar
  12. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–189PubMedCrossRefGoogle Scholar
  13. Ellis TW, Murray W, Paul K, Kavalieris L, Brophy J, Williams C, Maass M (2013) Electrical capacitance as a rapid and non-invasive indicator of root length. Tree Physiol 33:3–17. doi: 10.1093/treephys/tps115 PubMedCrossRefGoogle Scholar
  14. Gormally KH, McIntosh MS, Mucciardi AN (2011) Ground-penetrating radar detection and three-dimensional mapping of lateral macropores: I. Calibration. Soil Sci Soc Am J 75:1226–1235. doi: 10.2136/sssaj2010.0339 CrossRefGoogle Scholar
  15. Government of Japan (2008) Report on Japan’s supplementary information on LULUCF393 activities under article 3, paragraphs 3 and 4 of the Kyoto ProtocolGoogle Scholar
  16. Guo L, Chen J, Cui X, Fan B, Lin H (2013a) Application of ground penetrating radar for coarse root detection and quantification: a review. Plant Soil 362:1–23. doi: 10.1007/s11104-012-1455-5 CrossRefGoogle Scholar
  17. Guo L, Lin H, Fan B, Cui X, Chen J (2013b) Impact of root water content on root biomass estimation using ground penetrating radar: evidence from forward simulations and field controlled experiments. Plant and Soil: 1–18. Doi: 10.1007/s11104-013-1710-4
  18. Hirano Y, Mizoguchi T, Brunner I (2007) Root parameters of forest trees as sensitive indicators of acidifying pollutants-a review of research of Japanese forest trees-. J For Res 12:134–142CrossRefGoogle Scholar
  19. Hirano Y, Dannoura M, Aono K, Igarashi T, Ishii M, Yamase K, Makita N, Kanazawa Y (2009) Limiting factor in the detection of tree roots using ground-penetrating radar. Plant Soil 319:15–24. doi: 10.1007/s11104-008-9845-4 CrossRefGoogle Scholar
  20. Hirano Y, Yamamoto R, Dannoura M, Aono K, Igarashi T, Ishii M, Yamase K, Makita N, Kanazawa Y (2012) Detection frequency of Pinus thunbergii roots by ground-penetrating radar is related to root biomass. Plant Soil 360:363–373. doi: 10.1007/s11104-012-1252-1 CrossRefGoogle Scholar
  21. Hruška J, Čermák J, Sustek S (1999) Mapping tree root systems with ground-penetrating radar. Tree Physiol 19:125–130. doi: 10:1093/treephs/19.2.125 PubMedCrossRefGoogle Scholar
  22. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomass. Oecologia 108:389–411. doi: 10.1007/BF00333714 CrossRefGoogle Scholar
  23. Khalilnejad A, Ali FH, Osman N (2012) Contribution of the root to slope stability. Geotech Geol Eng 30:277–288. doi: 10.1007/s10706-011-9446-5 CrossRefGoogle Scholar
  24. Paul KI, Jacobsen K, Koul V, Leppert P, Smith J (2008) Predicting growth and sequestration of carbon by plantations growing in regions of low-rainfall in southern Australia. For Ecol Manag 254:205–216. doi: 10.1016/j.foreco.2007.08.003 CrossRefGoogle Scholar
  25. Repo T, Cao Y, Raimo C, Silvennoinen R, Ozier-Lafontaine H (2011) Electrical impedance spectroscopy and roots. In: Mancuso S (ed) Measuring roots, an updated approach. Springer, Berlin, pp 25–49Google Scholar
  26. Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees 21:385–402. doi: 10.1007/s00468-007-0132-4 CrossRefGoogle Scholar
  27. Samuelson LJ, Butnor J, Maier C, Stokes TA, Johnsen K, Kane M (2008) Growth and physiology of loblolly pine in response to long-term resource management: defining growth potential in the southern United States. Can J For Res 38:721–732. doi: 10.1139/X07-191 CrossRefGoogle Scholar
  28. Stokes A, Fourcaud T, Hruška J, Čermák J, Nadyezdhina N, Nadyezhdin V, Praus L (2002) An evaluation of different methods to investigate root system architecture of urban trees in situ: I. Ground-penetrating radar. J Arboricult 28:2–10Google Scholar
  29. Stover DB, Day FP, Butnor JR, Drake BG (2007) Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar. Ecology 88:1328–1334. doi: 10.1890/06-0989 PubMedCrossRefGoogle Scholar
  30. Tobin B, Čermák J, Chiatante D, Danjon F, Di Iorio A, Dupuy L, Eshel A, Jourdan C, Kalliokoski T, Laiho R, Nadezhdina N, Nicoll B, Pages L, Silva J, Spanos I (2007) Towards developmental modeling of tree root systems. Plant Biosyst 141:481–501. doi: 10.1080/11263500701626283 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Toko Tanikawa
    • 1
    Email author
  • Yasuhiro Hirano
    • 2
  • Masako Dannoura
    • 3
  • Keitarou Yamase
    • 4
  • Kenji Aono
    • 5
  • Masahiro Ishii
    • 5
  • Tetsurou Igarashi
    • 5
  • Hidetoshi Ikeno
    • 6
  • Yoichi Kanazawa
    • 7
  1. 1.Kansai Research Center, Forestry and Forest Products Research InstituteFushimiJapan
  2. 2.Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan
  3. 3.Graduate School of Global Environmental Studies, Graduate School of AgricultureKyoto UniversityKyotoJapan
  4. 4.Hyogo Prefectural Technology Center for Agriculture, Forestry and FisheriesShisoJapan
  5. 5.The General Environmental Technos Co., Ltd. (KANSO TECHNOS)OsakaJapan
  6. 6.School of Human Science and EnvironmentUniversity of HyogoHimejiJapan
  7. 7.Graduate School of Agricultural SciencesKobe UniversityKobeJapan

Personalised recommendations