Plant and Soil

, Volume 370, Issue 1–2, pp 47–57 | Cite as

Hydrogen-rich water alleviates salt stress in rice during seed germination

  • Sheng Xu
  • Susong Zhu
  • Yilong Jiang
  • Ning Wang
  • Ren Wang
  • Wenbiao Shen
  • Jie Yang
Regular Article



This study investigated the molecular mechanism of hydrogen-rich water (HRW)-mediated enhancement of tolerance against salinity stress during rice seed germination.


A combination of physiological and molecular approaches was used to study the effect of HRW on the alleviation of salinity stress.


A 100-mM NaCl stress caused the increase of H2 release in germinating rice seeds. With respect to samples treated with 100 mM NaCl alone, exogenous HRW pretreatments differentially attenuated the inhibition of seed germination and seedling growth caused by salinity. Further results showed that both 50 % (in particular) and 100 % concentration of HRW could activate α/β-amylase activity, thus accelerating the formation of reducing sugar and total soluble sugar. HRW also enhanced total, isozymatic activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase, catalase, and ascorbate peroxidase. These results were confirmed by the alleviation of oxidative damage, as indicated by a decrease of thiobarbituric acid reactive substances. Additionally, the ratio of potassium (K) to sodium (Na) in both the shoot and root parts was increased.


Together, our results suggested that exogenous HRW treatment on rice seeds may be a good option to alleviate salinity stress.


Hydrogen gas Ion homeostasis Oxidative damage Salinity tolerance Seed germination Oryza sativa 



Ascorbate peroxidase




Dehydroascorbate reductase


Glutathione reductase


Hydrogen-rich water


Monodehydroascorbate reductase


Reactive oxygen species


Superoxide dismutase


Thiobarbituric acid reactive substances



This work was supported by the Key Science and Technology Specific Projects of Guizhou Province (grant no. 2012-6005), the Rice Breeding, Cultivation and Industrialization Program of Guizhou Province (grant no. 20114003), and the Jiangsu Agricultural Science and Technology Independence Innovation Project (grant no. CX(11)4022).


  1. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396. doi: 10.1104/pp.106.082040 PubMedCrossRefGoogle Scholar
  2. Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107. doi: 10.1079/ssr2005159 CrossRefGoogle Scholar
  3. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi: 10.1016/0003-2697(71)90370-8 PubMedCrossRefGoogle Scholar
  4. Bernardi C, Chiesa LM, Soncin S, Passerò E, Biondi PA (2008) Determination of carbon monoxide in tuna by gas chromatography with micro-thermal conductivity detector. J Chromatogr Sci 46:392–394. doi: 10.1093/chromsci/46.5.392 PubMedCrossRefGoogle Scholar
  5. Boichenko EA (1947) Hydrogenase from isolated chloroplasts. Biokhimiya 12:153–162Google Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  7. Buchholz BM, Kaczorowski DJ, Sugimoto R, Yang R, Wang Y, Billiar TR, McCurry KR, Bauer AJ, Nakao A (2008) Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant 8:2015–2024. doi: 10.1111/j.1600-6143.2008.02359.x PubMedCrossRefGoogle Scholar
  8. Chen H, Sun YP, Li Y, Liu WW, Xiang HG, Fan LY, Sun Q, Xu XY, Cai JM, Ruan CP, Su N, Yan RL, Sun XJ, Wang Q (2010) Hydrogen-rich saline ameliorates the severity of l-arginine-induced acute pancreatitis in rats. Biochem Biophys Res Commun 393:308–313. doi: 10.1016/j.bbrc.2010.02.005 PubMedCrossRefGoogle Scholar
  9. Christopher K, Dimitrios R (2012) A review on energy comparison of hydrogen production methods from renewable energy sources. Energy Environ Sci 5:6640–6651. doi: 10.1039/C2EE01098D CrossRefGoogle Scholar
  10. Collins GG, Jenner CF, Paleg LG (1972) The metabolism of soluble nucleotides in wheat aleurone layers treated with gibberellic acid. Plant Physiol 49:1070–1079. doi: 10.1104/pp.49.3.404 Google Scholar
  11. Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S (2007) Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun 361:670–674. doi: 10.1016/j.bbrc.2007.07.088 PubMedCrossRefGoogle Scholar
  12. Han Y, Zhang J, Chen X, Gao Z, Xuan W, Xu S, Ding X, Shen W (2008) Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytol 177:155–166. doi: 10.1111/j.1469-8137.2007.02251.x PubMedGoogle Scholar
  13. Hong Y, Chen S, Zhang JM (2010) Hydrogen as a selective antioxidant: a review of clinical and experimental studies. J Int Med Res 38:1893–1903PubMedCrossRefGoogle Scholar
  14. Huang BK, Xu S, Xuan W, Li M, Cao ZY, Liu KL, Ling TF, Shen WB (2006) Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. J Integr Plant Biol 48:249–254. doi: 10.1111/j.1744-7909.2006.00220.x CrossRefGoogle Scholar
  15. Huang CS, Kawamura T, Toyoda Y, Nakao A (2010) Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res 44:971–982. doi: 10.3109/10715762.2010.500328 PubMedCrossRefGoogle Scholar
  16. Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W (2012) Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ. doi: 10.1111/pce.12029
  17. Liu K, Xu S, Xuan W, Ling T, Cao Z, Huang B, Sun Y, Fang L, Liu Z, Zhao N, Shen W (2007) Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci 172:544–555. doi: 10.1016/j.plantsci.2006.11.007 CrossRefGoogle Scholar
  18. Liu Q, Shen WF, Sun HY, Fan DF, Nakao A, Cai JM, Yan G, Zhou WP, Shen RX, Yang JM, Sun XJ (2010) Hydrogen-rich saline protects against liver injury in rats with obstructive jaundice. Liver Int 30:958–968. doi: 10.1111/j.1478-3231.2010.02254.x PubMedCrossRefGoogle Scholar
  19. Liu S, Liu K, Sun Q, Liu W, Xu W, Denoble P, Tao H, Sun X (2011) Consumption of hydrogen water reduces paraquat-induced acute lung injury in rats. J Biomed Biotechnol 305086. doi: 10.1155/2011/305086
  20. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. doi: 10.1111/j.1365-3040.2009.02041.x PubMedCrossRefGoogle Scholar
  21. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911 PubMedCrossRefGoogle Scholar
  22. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  23. Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N (2010) Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome—an open label pilot study. J Clin Biochem Nutr 46:140–149PubMedCrossRefGoogle Scholar
  24. Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S (2009) Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol 64:753–761. doi: 10.1007/s00280-008-0924-2 PubMedCrossRefGoogle Scholar
  25. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694. doi: 10.1038/nm1577 PubMedCrossRefGoogle Scholar
  26. Ohsawa I, Nishimaki K, Yamagata K, Ishikawa M, Ohta S (2008) Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun 377:1195–1198. doi: 10.1016/j.bbrc.2008.10.156 PubMedCrossRefGoogle Scholar
  27. Renwick GM, Giumarro C, Siegel SM (1964) Hydrogen metabolism in higher plants. Plant Physiol 39:303–306. doi: 10.1104/pp.39.3.303 PubMedCrossRefGoogle Scholar
  28. Sanadze GA (1961) Absorption of molecular hydrogen by green leaves in light. Fiziol Rast 8:555–559Google Scholar
  29. Sato Y, Kajiyama S, Amano A, Kondo Y, Sasaki T, Handa S, Takahashi R, Fukui M, Hasegawa G, Nakamura N, Fujinawa H, Mori T, Ohta M, Obayashi H, Maruyama N, Ishigami A (2008) Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun 375:346–350. doi: 10.1016/j.bbrc.2008.08.020 PubMedCrossRefGoogle Scholar
  30. Shirahata S, Hamasaki T, Teruya K (2012) Advanced research on the health benefit of reduced water. Trends Food Sci Tech 23:124–131. doi: 10.1016/j.tifs.2011.10.009 CrossRefGoogle Scholar
  31. Spulber S, Edoff K, Hong L, Morisawa S, Shirahata S, Ceccatelli S (2012) Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice. PLoS One 7:e42078. doi: 10.1371/journal.pone.0042078 PubMedCrossRefGoogle Scholar
  32. Wahid A, Perveen M, Gelani S, Basra SM (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294. doi: 10.1016/j.jplph.2006.01.005 PubMedCrossRefGoogle Scholar
  33. Wang Y, Li L, Cui W, Xu S, Shen W, Wang R (2012) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351:107–119. doi: 10.1007/s11104-011-0936-2 CrossRefGoogle Scholar
  34. Xie K, Yu Y, Pei Y, Hou L, Chen S, Xiong L, Wang G (2010) Protective effects of hydrogen gas on murine polymicrobial sepsis via reducing oxidative stress and HMGB1 release. Shock 34:90–97. doi: 10.1097/SHK.0b013e3181cdc4ae PubMedCrossRefGoogle Scholar
  35. Xie Y, Mao Y, Lai D, Zhang W, Shen W (2012) H2 enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS One 7:e49800. doi: 10.1371/journal.pone.0049800 PubMedCrossRefGoogle Scholar
  36. Xu S, Lou T, Zhao N, Gao Y, Dong L, Jiang D, Shen W, Huang L, Wang R (2011) Presoaking with hemin improves salinity tolerance during wheat seed germination. Acta Physiol Plant 33:1173–1183. doi: 10.1007/s11738-010-0645-0 CrossRefGoogle Scholar
  37. Zhang H, Shen WB, Xu LL (2003) Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolism under osmotic stress. Acta Bot Sin 45:901–905Google Scholar
  38. Zheng X, Mao Y, Cai J, Li Y, Liu W, Sun P, Zhang JH, Sun X, Yuan H (2009) Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radic Res 43:478–484. doi: 10.1080/10715760902870603 PubMedCrossRefGoogle Scholar
  39. Zheng XF, Sun XJ, Xia ZF (2011) Hydrogen resuscitation, a new cytoprotective approach. Clin Exp Pharmacol Physiol 38:155–163. doi: 10.1111/j.1440-1681.2011.05479.x CrossRefGoogle Scholar
  40. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. doi: 10.1016/s1360-1385(00)1838-0 PubMedCrossRefGoogle Scholar
  41. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445. doi: 10.1016/s1369-5266(03)00085-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Life SciencesNanjing Agricultural UniversityNanjingChina
  2. 2.Institute of Botany, Jiangsu Province and the Chinese Academy of SciencesJiangsu Province Key Laboratory for Plant Ex-situ ConservationNanjingChina
  3. 3.Guizhou Rice Research InstituteGuiyangChina
  4. 4.Institute of Food CropsJiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice R&D CenterNanjingChina

Personalised recommendations