Plant and Soil

, Volume 366, Issue 1–2, pp 537–549 | Cite as

Spatial distribution of the soil organic carbon pool in a Holm oak dehesa in Spain

  • Nuria Simón
  • Fernando Montes
  • Eugenio Díaz-Pinés
  • Raquel Benavides
  • Sonia Roig
  • Agustín Rubio
Regular Article



Dehesas are agroforestry systems characterized by scattered trees among pastures, crops and/or fallows. A study at a Spanish dehesa has been carried out to estimate the spatial distribution of the soil organic carbon stock and to assess the influence of the tree cover.


The soil organic carbon stock was estimated from the five uppermost cm of the mineral soil with high spatial resolution at two plots with different grazing intensities. The Universal Kriging technique was used to assess the spatial distribution of the soil organic carbon stocks, using tree coverage within a buffering area as an auxiliary variable.


A significant positive correlation between tree presence and soil organic carbon stocks up to distances of around 8 m from the trees was found. The tree crown cover within a buffer up to a distance similar to the crown radius around the point absorbed 30 % of the variance in the model for both grazing intensities, but residual variance showed stronger spatial autocorrelation under regular grazing conditions.


Tree cover increases soil organic carbon stocks, and can be satisfactorily estimated by means of crown parameters. However, other factors are involved in the spatial pattern of the soil organic carbon distribution. Livestock plays an interactive role together with tree presence in soil organic carbon distribution.


Agroforestry systems Universal Kriging Spatial variance partition Soil C Tree effect 



We thank Remedios Cubillo and Beatriz Ortiz for laboratory support and Emilien Simonot for his valuable previous work. We would like to thank the managers of El Dehesón, and particularly Celia López-Carrasco, for their practical support. The authors wish to express their appreciation to Ms Pru Brooke-Turner and Mr Adam Collins for their linguistic assistance. This study has been partially funded by the projects AGL2010-16862 and SUM2006-00034-C02 and the Ramón y Cajal Program from the Spanish Ministry of Education, and preliminary results have been presented in the frame of COST Action 639 (BurnOut).


  1. Barba L, Carretero JM, García A, García J, López A, Mainer C, Olea L, Palacios E, Ruiz E, San Miguel A, Serrada R, Solano JM, Velasco A (2008) Plan Nacional de Dehesas. Ministerio de Medio Ambiente, Medio Rural y Marino, MadridGoogle Scholar
  2. Blake GR, Hartge KH (1986) Bulk Density. In: Klute A (ed) Methods of soil analysis. Part 1: Physical and mineralogical methods, 5th edn. Soil Science Society of America, Madison, WI, pp 363–375Google Scholar
  3. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi: 10.2307/1940179 CrossRefGoogle Scholar
  4. Carreiras JMB, Pereira JMC, Pereira JS (2006) Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. Forest Ecol Manag 223:45–53. doi: 10.1016/j.foreco.2005.10.056 CrossRefGoogle Scholar
  5. Chen F, Kissell DE, West LT, Adkins W (2000) Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Sci Soc Am J 64:746–753. doi: 10.2136/sssaj2000.642746x CrossRefGoogle Scholar
  6. Chiti T, Díaz-Pinés E, Rubio A (2012). Soil organic carbon stocks of conifers, broadleaf and evergreen broadleaf forests of Spain. Biology and Fertility of Soils (in press) doi  10.1007/s00374-012-0676-3
  7. Cressie NAC (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  8. Díaz-Pinés E, Rubio A, Van Miegroet H, Benito M, Montes F (2011) Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? Forest Ecol Manag 262:1895–1904. doi: 10.1016/j.foreco.2011.02.004 CrossRefGoogle Scholar
  9. Ellert B, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538. doi: 10.4141/cjss95-075 CrossRefGoogle Scholar
  10. Escudero A, García B, Gómez JM, Luis E (1985) The nutrient cycling in Quercus rotundifolia and Quercus pyrenaica ecosystems (dehesas) of Spain. Acta Oecol Oecol Plant 6:73–86Google Scholar
  11. Escudero A, Del Arco JM, Garrido MV (1992) The efficiency of nitrogen retranslocation from leaf biomass in Quercus ilex ecosystems. Vegetatio 99–100:225–237. doi: 10.1007/BF00118229 CrossRefGoogle Scholar
  12. FAO (2004) Carbon sequestration in dryland soils. World soil resources reports 102. RomeGoogle Scholar
  13. Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa. Pedobiologia 47:117–125. doi: 10.1078/0031-4056-00175 CrossRefGoogle Scholar
  14. Gallardo A, Covelo F (2005) Spatial pattern and scale of leaf N and P concentration in a Quercus robur population. Plant Soil 273:269–277. doi: 10.1007/s11104-004-7943-5 CrossRefGoogle Scholar
  15. Gallardo A, Maestre FT (2008) Métodos geoestadísticos para el análisis de datos ecológicos espacialmente explícitos. In: Maestre FT, Escudero A, Bonet A (eds) Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones. Universidad Rey Juan Carlos, pp 215–272Google Scholar
  16. Gallardo A, Merino J (1998) Soil nitrogen dynamics in response to carbon increase in a Mediterranean shrubland of SW Spain. Soil Biol Biochem 30:1349–1358. doi: 10.1016/S0038-0717(97)00265-4 CrossRefGoogle Scholar
  17. Gallardo A, Rodríguez-Saucedo JJ, Covelo F, Fernández-Alés R (2000) Soil nitrogen heterogeneity in a Dehesa ecosystem. Plant Soil 222:71–82. doi: 10.1023/A:1004725927358 CrossRefGoogle Scholar
  18. Garrity D, Okono A, Grayson M, Parrott S (eds) (2006) World agroforestry into the future. World Agroforesty Centre, NairobiGoogle Scholar
  19. Gea G, Montero G, Cañellas I (2009) Changes in limiting resources determine spatio-temporal variability in tree–grass interactions. Agroforest Syst 76:375–387. doi: 10.1007/s10457-009-9211-4 CrossRefGoogle Scholar
  20. Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45. doi: 10.1016/S0016-7061(98)00078-0 CrossRefGoogle Scholar
  21. Goreaud F, Pélissier R (1999) On explicit formulas of edge effect correction for Ripley's K-function. J Veg Sci 10:433–438. doi: 10.2307/3237072 CrossRefGoogle Scholar
  22. Gotway CA, Stroup WW (1997) A generalized linear model approach to spatial data analysis and prediction. J Agr Biol Environ Stat 2:157–178. doi: 10.2307/1400401 CrossRefGoogle Scholar
  23. Harville DA (1974) Bayesian inference for variance components using only error contrasts. Biometrika 61:383–385. doi: 10.1093/biomet/61.2.383 CrossRefGoogle Scholar
  24. He F, Legendre P, LaFrankie JV (1996) Spatial pattern of diversity in a tropical rain forest in Malaysia. J Biogeogr 23:57–74. doi: 10.1046/j.1365-2699.1996.00976.x CrossRefGoogle Scholar
  25. IPCC (2007) Climate change 2007: synthesis report summary for policymakers. Paper of the intergovernmental panel on climate change. IPCC Secretariat, GeneveGoogle Scholar
  26. IUSS Working Group WRB (2007) World reference base for soil resources 2006. First update 2007. World soil resources reports no. 103. FAO, RomeGoogle Scholar
  27. Jackson RB, Caldwell MM (1993) Geostatistical patterns of soil heterogeneity around individual perennial plants. J Ecol 81:683–692. doi: 10.2307/2261666 CrossRefGoogle Scholar
  28. Joffre R, Rambal S (1988) Soil water improvement by trees in the rangelands of southern Spain. Oecologia Plantarum 9:405–422Google Scholar
  29. Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agroforest Syst 45:57–79. doi: 10.1023/A:1006259402496 CrossRefGoogle Scholar
  30. Kandeler E, Stemmer M, Gerzabek MH (2005) Role of microorganisms in carbon cycling in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, Heidelberg, pp 139–157CrossRefGoogle Scholar
  31. Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48:21–51. doi: 10.1023/A:1006238902976 CrossRefGoogle Scholar
  32. Lark RM (2000) A geostatistical extension of the sectioning procedure for disaggregating soil information to the scale of functional models of soils processes. Geoderma 95:89–112. doi: 10.1016/S0016-7061(99)00086-5 CrossRefGoogle Scholar
  33. Laslett GM, McBratney AB, Pahl PJ, Hutchinson MF (1987) Comparison of several spatial prediction methods for soil pH. J Soil Sci 38:325–341. doi: 10.1111/j.1365-2389.1987.tb02148.x CrossRefGoogle Scholar
  34. Li Y, Tenhunen J, Mirzaei H, Hussain MZ, Siebicke L, Foken T, Otieno D, Schmidt M, Ribeiro N, Aires L, Pio C, Banza J, Pereira J (2008) Assessment and up-scaling of CO2 exchange by patches of the herbaceous vegetation mosaic in a Portuguese cork oak woodland. Agr Forest Meteorol 148:1318–1331. doi: 10.1016/j.agrformet.2008.03.013 CrossRefGoogle Scholar
  35. Lister AJ, Mou PM, Jones RH, Mitchell RJ (2000) Spatial patterns of soil and vegetation in a 40-year-old slash pine (Pinus elliottii) forest in the Coastal Plain of South Carolina, U.S.A. Can J For Res 30:145–155 doi: 10.1139/x99-196 Google Scholar
  36. Loosmore NB, Ford ED (2006) Statistical inference using the G or K point pattern spatial statistics. Ecology 87: 1925–1931. 10.1890/0012-9658(2006)87[1925:SIUTGO]2.0.CO;2]
  37. Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5:439–468CrossRefGoogle Scholar
  38. Montes F, Cañellas I (2007) The spatial relationship between post-crop remaining trees and the establishment of saplings in Pinus sylvestris stands in Spain. Appl Vegetation Sci 10:151–160. doi: 10.1111/j.1654-109X.2007.tb00513.x Google Scholar
  39. Montes F, Ledo A (2010) Incorporating environmental and geographical information in forest data analysis: a new fitting approach for universal kriging. Can J For Res 40:1852–1861. doi: 10.1139/X10-131 CrossRefGoogle Scholar
  40. Moreno G (2008) Response of understorey forage to multiple tree effects in Iberian dehesas. Agr Ecosyst Environ 123:239–244. doi: 10.1016/j.agee.2007.04.006 CrossRefGoogle Scholar
  41. Moreno G, Obrador JJ (2007) Effects of trees and understorey management on soil fertility and nutritional status of holm oaks in Spanish dehesas. Nutr Cycl Agroecosys 78:253–264. doi: 10.1007/s10705-007-9089-3 CrossRefGoogle Scholar
  42. Moreno G, Pulido F. (2008) The functioning, management and persistence of dehesas. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Current Status and Future Prospects Springer Netherlands, pp 127–160Google Scholar
  43. Moreno G, Obrador JJ, García A (2007) Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agr Ecosyst Environ 119:270–280. doi: 10.1016/j.agee.2006.07.013 CrossRefGoogle Scholar
  44. Mueller TG, Pierce FJ (2003) Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Sci Soc Am J 67:258–267. doi: 10.2136/sssaj2003.2580 CrossRefGoogle Scholar
  45. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis. Part 3: chemical methods 3 rd edn. Soil Science Society of America. Madison, WI. Book Series, No. 5, pp 961–1010Google Scholar
  46. Oliver M, Webster R, Gerrard J (1989) Geostatistics in physical geography. Part II: Applications. Transactions of the Institute of British Geographers, New Series, Vol. 14, No. 3, pp 270–286Google Scholar
  47. Peco B, Sánchez AM, Azcárate FM (2006) Abandonment in grazing systems: consequences for vegetation and soil. Agr Ecosyst Environ 113:284–294. doi: 10.1016/j.agee.2005.09.017 CrossRefGoogle Scholar
  48. Pinto-Correia T (1993) Landscape monitoring and management in European rural areas: Danish and Portuguese case studies of landscape patterns and dynamics. Dissertation, University of CopenhagenGoogle Scholar
  49. Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: Global trends. Ecology 70:1346–1354CrossRefGoogle Scholar
  50. Ripley BD (1977) Modelling spatial patterns (with discussion). J Roy Stat Soc 2:172–212Google Scholar
  51. Rodeghiero M, Rubio A, Díaz-Pinés E, Romanyà J, Marañón S, Levy G, Sebastiá T, Fernández-Getino AP, Karyotis T, Chiti T, Sirca C, Martins A, Madeira M, Zhiyanski M, Gristina L (2011) Mediterranean ecosystems. In: Jandl R, Olssons M, Rodeghiero M (eds) Soil carbon in sensitive european ecosystems. John Wiley & Sons, West Sussex, UKGoogle Scholar
  52. Rodríguez-Murillo JC (2001) Organic carbon content under different types of land use and soil in peninsular Spain. Biol Fer Soils 33:53–61. doi: 10.1007/s003740000289 CrossRefGoogle Scholar
  53. Rovira P, Romanyà J, Rubio A, Roca N, Alloza JA, Vallejo R (2007) Estimación del carbono orgánico en los suelos peninsulares españoles. In: Bravo F (ed) El papel de los bosques en la mitigación del cambio climático. Fundación Gas Natural, Barcelona, pp 197–222Google Scholar
  54. San Miguel A (2001) Pastos naturales españoles. Fundación Conde del Valle de Salazar, Ediciones Mundi-Prensa, E.T.S.I. Montes, MadridGoogle Scholar
  55. Schindlbacher A, de Gonzalo C, Díaz-Pinés E, Gorría P, Matthews B, Inclán R, Zechmeister-Boltenstern S, Rubio A, Jandl R (2010) Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients. J Geophys Res 115(G03018):1–10. doi: 10.1029/2009JG001191 Google Scholar
  56. Scholes RJ, Archer SR (1997) Tree–grass interactions in savannas. Annu Rev Ecol Syst 28:517–544. doi: 10.1146/annurev.ecolsys.28.1.517 CrossRefGoogle Scholar
  57. Stein A, Corsten LCA (1991) Universal kriging and cokriging as a regression procedure. Biometrics 47:575–587. doi: 10.2307/2532147 CrossRefGoogle Scholar
  58. Veblen KE (2012) Savanna glade hotspots: Plant community development and synergy with large hervibores. J Arid Environ 78:119–127. doi: 10.1016/j.jaridenv.2011.10.016 CrossRefGoogle Scholar
  59. Wiegand T, Moloney KA (2004) Rings, circles and null-models for point pattern analysis in ecology. Oikos 10:209–229. doi: 10.1111/j.0030-1299.2004.12497.x CrossRefGoogle Scholar
  60. Young A (1997) Agroforestry for soil management. CAB International, Wallingford, pp 29 and 34–37Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Nuria Simón
    • 1
  • Fernando Montes
    • 1
    • 2
  • Eugenio Díaz-Pinés
    • 1
    • 3
  • Raquel Benavides
    • 4
  • Sonia Roig
    • 1
  • Agustín Rubio
    • 1
  1. 1.Silviculture and Pasciculture Department of Forestry FacultyUniversidad Politécnica de MadridMadridSpain
  2. 2.CIFOR-INIAMadridSpain
  3. 3.Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of TechnologyGarmisch-PartenkirchenGermany
  4. 4.National Museum of Natural Sciences – CSICMadridSpain

Personalised recommendations