Plant and Soil

, Volume 359, Issue 1–2, pp 19–22 | Cite as

How red mangrove seedlings stand up: an answer for Cheeseman (2012)

Commentary
  • 260 Downloads

Keywords

Rhizophora Tension wood fibres Hypocotyl Mangrove Seedings Geotropism G-fibres 

Notes

Acknowledgements

We thank Judith Warnement, Librarian, Harvard University Herbarium Library for help with photographing the illustration by Rumphius.

References

  1. Beekman EM (2011) The Amboinese Herbal. An English translation of Georgius Everhardius Rumphius (Georg Eberhard Rumpf, 1627-1702). 6 vols. Yale University Press and National Tropical Botanical Garden, New HavenGoogle Scholar
  2. Bowling AJ, Vaughn KC (2009) Gelatinous fibers are widespread in coiling tendrils and twining vines. Amer J Bot 96:719–727CrossRefGoogle Scholar
  3. Cheeseman JM (2012) How red mangrove seedlings stand up. Plant Soil 355:395–406CrossRefGoogle Scholar
  4. Davis JH (1940) The ecology and geologic role of mangroves in Florida. Papers Torugas Lab 32 (Publ Carnegie Inst No 517):303-341Google Scholar
  5. Egler FE (1948) The dispersal and establishment of red mangrove, Rhizophora in Florida. Caribbean Forester 9:299–319Google Scholar
  6. Fisher JB (1985) Induction of reaction wood in Terminalia (Combretaceae): roles of gravity and stress. Ann Bot 55:237–248Google Scholar
  7. Fisher JB (2008) Anatomy of axis contraction in seedlings from a fire prone habitat. Amer J Bot 95:1337–1348CrossRefGoogle Scholar
  8. Fisher JB, Stevenson JW (1981) Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot Gaz 142:82–95CrossRefGoogle Scholar
  9. Fisher JB, Tomlinson PB (2002) Tension wood fibers are related to gravitropic movement of red mangrove (Rhizophora mangle) seedlings. J Plant Res 115:39–45PubMedCrossRefGoogle Scholar
  10. LaRue CD, Muzik TJ (1954) Growth, regeneration, and precocious rooting in Rhizophora mangle. Pap Michigan Acad Sci 39:9–29Google Scholar
  11. Lawrence DB (1949) Self-erecting habit of seedling red mangroves (Rhizophora mangle L.). Amer J Bot 36:426–427CrossRefGoogle Scholar
  12. Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63:551–565PubMedCrossRefGoogle Scholar
  13. Nishikubo N, Awano T, Basiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan Endo-transglycosylase (XET) Functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855PubMedCrossRefGoogle Scholar
  14. Rumphius GE (1741–1755) Herbarium Amboinense. 6 vols. Ed. J. Burmann , Amsterdam, Meinard UytwerfGoogle Scholar
  15. Tomlinson PB, Cox PA (2000) Systematic and functional anatomy of seedlings in mangrove Rhizophoraceae: vivipary explained? Bot J Linn Soc 134:215–231Google Scholar
  16. Van Steenis CGGJ (1958) Ecology of mangroves. In Ding Hou, ed. Rhizophoraceae. Flora Malesiana. Ser 1 5 (4):431-444Google Scholar
  17. Yamashiro M (1961) Ecological study on Kandelia candel (L.) Druce, with special refrence to the structure and falling of seedlings. Hikobia 2:209–214Google Scholar
  18. Zimmermann MH, Wardrop AB, Tomlinson PB (1968) Tension wood in aerial roots of Ficus benjamina L. Wood Sci Technol 2:95–104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of BotanyUniversity of British ColumbiaVancouverCanada
  2. 2.The KampongNational Tropical Botanical GardenMiamiUSA

Personalised recommendations