Plant and Soil

, Volume 366, Issue 1–2, pp 119–132 | Cite as

A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.)

  • Luciano Pasqualoto Canellas
  • Dariellys Martínez Balmori
  • Leonardo Oliveira Médici
  • Natália Oliveira Aguiar
  • Eliemar Campostrini
  • Raul C. C. Rosa
  • Arnoldo R. Façanha
  • Fábio Lopes OlivaresEmail author
Regular Article



Endophytic diazotrophic bacteria colonize several non-leguminous plants and promote plant growth. Different mechanisms are involved in bacteria-induced plant growth promotion, including biological nitrogen fixation (BNF), mineral solubilization, production of phytohormones, and pathogen biocontrol. Herbaspirillum seropedicae is a broad-host-range endophyte that colonizes sugarcane, rice, wheat, sorghum, and maize, and has been used as a biofertilizer. Contrasting results between greenhouse and field experiments have prompted efforts to improve the consistency of the plant response to microbial stimulation.


The aim of this study was to evaluate the effect of the presence of humic substances on inoculation of maize (Zea mays L.) with H. seropedicae.


Two experiments were conducted: one in the greenhouse using sand and nutrient solution and the other a field trial in soil with low natural fertility and to which was applied N in the form of urea (50 kg ha−1). In the greenhouse, pre-emerging seeds were inoculated with a solution of H. seropedicae (109 cells mL−1) in the presence of humic substances isolated from vermicompost (10, 20, or 30 mg C L−1); in the field trial, bacteria combined with humate were added as a foliar spray (450 L ha−1).


At early stages (7 and 45 days old) in the greenhouse, the treatment activated plant metabolism including enhancement of plasma membrane H+-ATPase activity, alteration of sugar and N metabolism, and greater net photosynthesis. The number of viable bacterial cells was higher in root tissues when inoculation was in the presence of soluble humic substances. Foliar application of endophytic diazotrophic bacteria and humic substances increased maize grain production 65 % under field conditions. These results show a promising use of humic substances to improve the benefit of endophytic diazotrophic inoculation.


Zea mays L. Endophytes Diazotrophs Humates 



This work was part of D.B.M thesis and was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo À Pesquisa do Estado do Rio de Janeiro (FAPERJ) and International Foundation of Science (IFS). Nudiba-UENF is a member of the National Institute of Science and Technology for Nitrogen Fixation (INCT Fixação Biológica de Nitrogênio). We also grateful to CAPES/MES PEC-PG for the D.B.M doctoral fellowship at Nudiba.


  1. Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12PubMedCrossRefGoogle Scholar
  2. Arancon NQ, Edwards CA, Atiyeh RM, Metzger JD (2004) Effects of vermicomposts produced from food waste on greenhouse peppers. Biores Technol 93:139–144Google Scholar
  3. Albuzio A, Ferrari G, Nardi S (1986) Effects of humic substances in nitrate uptake and assimilation in barley seedlings. Can J Soil Sci 66:731–736CrossRefGoogle Scholar
  4. Baldani VLD, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491CrossRefGoogle Scholar
  5. Bashan Y, Levanony H (1991) Alterations in membrane potential and in proton efflux in plant roots induced by Azospirillum brasilense. Plant Soil 137:99–103CrossRefGoogle Scholar
  6. Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209PubMedCrossRefGoogle Scholar
  7. Boddey RM, Oliveira OCD, Urquiaga S, Reis VM, Olivares FLD, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugarcane and rice: contributions and prospects for improvement. Plant Soil 174:195–209CrossRefGoogle Scholar
  8. Bouma TJ, Nilsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218:185–196CrossRefGoogle Scholar
  9. Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957PubMedCrossRefGoogle Scholar
  10. Canellas LP, Teixeira Junior LRL, Dobbss LB, Silva CA, Medici LO, Zandonadi DB, Façanha AR (2008) Humic acids crossinteractions with root and organic acids. Ann Appl Biol 153:157–166Google Scholar
  11. Canellas LP, Piccolo A, Dobbss LB, Spaccini R, Olivares FL, Zandonadi DB, Façanha AR (2010) Chemical composition and bioactivity properties of size fractions separated from a vermicompost humic acid. Chemosphere 78:457–466PubMedCrossRefGoogle Scholar
  12. Canellas LP, Dantas DJ, Aguiar NO, Peres LEP, Zsögön A, Olivares FL, Dobbss LB, Façanha AR, Nebbioso A, Piccolo A (2011) Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Ann Appl Biol 159:202–211CrossRefGoogle Scholar
  13. Chi F, Shen SH, Cheng HP, Jing YX, Yanni Y, Dazzo FB (2005) Ascending migration of endophytic rhizobia from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7277PubMedCrossRefGoogle Scholar
  14. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175CrossRefGoogle Scholar
  15. Cocking EC, Yemm EW (1954) Estimation of amino acids by ninhidrin. Biochem J 58:XII–XIIIPubMedGoogle Scholar
  16. Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bactérias diazotróficas de plantas não leguminosas. Embrapa Agrobiologia, SeropédicaGoogle Scholar
  17. Embrapa (1997) Manual de métodos de análise de solo. Embrapa CNPS, Rio de JaneiroGoogle Scholar
  18. Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J (2005) A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Int J Syst Evol Microbiol 55:1233–1237CrossRefGoogle Scholar
  19. Hager A, Debus G, Edel HG, Stransky H, Serrano R (1991) Auxin induces exocytosis and rapid synthesis of a high-turnover pool of plasma-membrane H+-ATPase. Planta 185:527–537CrossRefGoogle Scholar
  20. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425CrossRefGoogle Scholar
  21. James EK, Olivares F (1998) Infection and colonization of sugarcane and other graminaceous plants by endophytic bacteria. Crit Rev Plant Sci 17:77–119CrossRefGoogle Scholar
  22. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microb Interact 15:894–906CrossRefGoogle Scholar
  23. Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279PubMedCrossRefGoogle Scholar
  24. Kirchhof G, Reis VM, Baldani JI, Eckert B, Döbereiner J, Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:45–55CrossRefGoogle Scholar
  25. Machado AT, Sodek L, Döbereiner J, Reis VM (1998) Efeito da adubação nitrogenada e da inoculação com bactérias diazotróficas no comportamento bioquímico da cultivar de milho Nitroflint. Pesq Agrop Bras 33:961–970Google Scholar
  26. Medici LO, Machado AT, Azevedo RA, Pimentel C (2003) Glutamine synthetase activity, relative water content and water potential in maize submitted to drought. Biol Plant 47:301–304CrossRefGoogle Scholar
  27. Monteiro F, Genin S, van Dijk I, Valls M (2012) A luminescent reporter evidences active expression of Ralstonia solanacearum type III secretion system genes throughout plant infection. Microbiology (in press)Google Scholar
  28. Morsomme P, Boutry M (2000) The plant plasma-membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta 1465:1–16PubMedCrossRefGoogle Scholar
  29. Muscolo A, Cutrupi S, Nardi S (1998) IAA detection in humicsubstances. Soil Biol Biochem 30:1199–1201Google Scholar
  30. Nardi S, Concheri G, Dell’Agnola G (1996) Biological activity ofhumus. In: Piccolo A (ed) Humic substances in terrestrialecosystems. Elsevier, Amsterdam, pp 361–406Google Scholar
  31. Nardi S, Muscolo A, Vaccaro S, Baiano S, Spaccini R, Piccolo A (2007) Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and Krebs cycle in maize seedlings. Soil Biol Biochem 39:3138–3146CrossRefGoogle Scholar
  32. Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) Biological activities of humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Vol 2, part 1. Fundamentals and impact of mineral-organic-biota interactions on the formation, transformation, turnover, and storage of natural nonliving organic matter (NOM). Wiley, Hoboken, pp 305–339Google Scholar
  33. Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves predominantly of Gramineae. Biol Fertil Soils 21:197–200CrossRefGoogle Scholar
  34. Piccolo A (2002) The supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134CrossRefGoogle Scholar
  35. Pinton R, Cesco S, Iacoletti G, Astolfi S, Varanini Z (1999) Modulation of NO3- uptake by water-extractable humicsubstances: involvement of root plasma membrane H+ATPase. Plant Soil 215:155–161CrossRefGoogle Scholar
  36. Puglisi E, Fragoulis G, Del Re AM, Spaccini R, Gigliotti G, Said-Pullicino D, Trevisan M (2008) Carbon deposition in soil rhizosphere following amendments with soluble fractions, as evaluated by combined soil-plant rhizobox and reporter gene systems. Chemosphere 73:1292–1299PubMedCrossRefGoogle Scholar
  37. Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J Exp Bot 55:803–813PubMedCrossRefGoogle Scholar
  38. Radwan TEE, Mohamed ZK, Reis VM (2002) Production of indole-3-acetic acid by different strains of Azospirillum and Herbaspirillum spp. Symbiosis 32:39–54Google Scholar
  39. Reis FB Junior, Machado CTT, Machado A, Sodek L (2008) Inoculação de Azospirillum amazonense em dois genótipos de milho sob diferentes regimes de nitrogênio. Rev Bras Ciênc Solo 32:1139–1146CrossRefGoogle Scholar
  40. Roesch LFW, Olivares FL, Passaglia LMP, Selbach PA et al (2006) Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J Microbiol Biotechnol 22:967–974CrossRefGoogle Scholar
  41. Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104CrossRefGoogle Scholar
  42. Russell L, Stokes AR, Macdonald H, Muscolo A, Nardi S (2006) Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant Soil 283:175–185CrossRefGoogle Scholar
  43. Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482PubMedCrossRefGoogle Scholar
  44. Spaccini R, Piccolo A, Conte P, Haberhauer G, Gerzabek MH (2002) Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol Biochem 34:1839–1851CrossRefGoogle Scholar
  45. Stitt M, Lilley RMC, Gerhardt R, Heldt HW (1989) Metabolite levels in specific cells and subcellular compartments of plant leaves. Methods Enzymol 174:518–552CrossRefGoogle Scholar
  46. Suman A, Gaur A, Shrivastava AK, Yadav RL (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47:155–162CrossRefGoogle Scholar
  47. Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2011) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil. doi: 10.1007/s11104-011-1023-4
  48. Urquiaga S, Xavier RP, de Morais RF, Batista RB, Schultz N, Leite JM, Maia e Sá J, Barbosa KP, de Resende AS, Alves BJR, Boddey RM (2011) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil (in press)Google Scholar
  49. Zandonadi DB, Canellas LP, Façanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583–1595PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Luciano Pasqualoto Canellas
    • 1
  • Dariellys Martínez Balmori
    • 1
  • Leonardo Oliveira Médici
    • 2
  • Natália Oliveira Aguiar
    • 1
  • Eliemar Campostrini
    • 3
  • Raul C. C. Rosa
    • 4
  • Arnoldo R. Façanha
    • 1
  • Fábio Lopes Olivares
    • 1
    Email author
  1. 1.Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA)Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)Campos dos GoytacazesBrazil
  2. 2.Departamento de Ciências FisiológicasUniversidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  3. 3.Laboratório de Melhoramento Genético VegetalUniversidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)Campos dos GoytacazesBrazil
  4. 4.Embrapa Mandioca e FruticulturaCruz das AlmasBrasil

Personalised recommendations