Plant and Soil

, Volume 363, Issue 1–2, pp 319–329 | Cite as

Differences in nitrogen use strategies between native and exotic tree species: predicting impacts on invaded ecosystems

  • N. González-Muñoz
  • P. Castro-Díez
  • I. M. Parker
Regular Article


Background and aim

Exotic plant species can alter the nitrogen cycle in invaded ecosystems. We assess the differences in nitrogen use strategies and litter production and dynamics among three native riparian trees (Fraxinus angustifolia, Populus alba and Ulmus minor) and three co-occurring exotics (Ailanthus altissima, Robinia pseudoacacia and Ulmus pumila), currently spreading throughout river banks in inner Spain. We aim to predict the ecological consequences of a replacement of the natives by the exotics.


We compared the leaf lifespan, nitrogen resorption efficiency in leaves, nitrogen mean residence time, amount and timing of litter production and amount of nitrogen returned to soils between these native and exotic species.


We found differences among species in all the variables measured, but not between native or exotic origins. Species were ranked from the most to the least conservative nitrogen use strategy as follows: U. pumila was the most conservative species, followed by the three natives (with an intermediate strategy), A. altissima and finally by the nitrogen-fixer R. pseudoacacia. The studied exotic species would produce contrasting impacts on the nitrogen cycle upon invasion.


On the basis of our results, we predict little impacts on the nitrogen cycle if U. pumila dominates the landscape. Despite being nitrogen-fixer R. pseudocacia would not increase soil nitrogen availability in the study area due to its low litter production and litter decomposition rates. In contrast, we predict an increase in nitrogen availability of soils upon A. altissima invasion, as this species produces a high amount of nitrogen rich and labile litter. This study offers a striking example of the contingencies involved in predicting the ecosystem impacts of exotic plant invasion.


Nitrogen use strategy Nitrogen resorption Mean residence time Litter production Exotic trees riparian forests 


  1. Adler PB, D’Antonio CM, Tunison JT (1998) Understory sucession following a dieback of Myrica faya in Hawai’i Volcanoes National Park. Pac Sci 52(1):69–78Google Scholar
  2. Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67CrossRefGoogle Scholar
  3. Alonso A, González-Muñoz N, Castro-Díez P (2010) Comparison of leaf decomposition and macroinvertebrate colonization between exotic and native trees in a freshwater ecosystem. Ecol Res 25:647–653CrossRefGoogle Scholar
  4. Belote RT, Jones RH (2009) Tree leaf litter composition and nonnative earthworms influence plant invasion in experimental forest floor mesocosms. Biol Invasions 11:1045–1052CrossRefGoogle Scholar
  5. Boring LR, Swank WT (1984) The role of black locust (Robinia pseudoacacia) in forest sucesion. J Ecol 72(3):749–766CrossRefGoogle Scholar
  6. Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in alpine tundra. Bull Ecol Soc Am 74:170–171Google Scholar
  7. Carino DA, Daheler CC (2002) Can inconspicuous legumes facilitate alien grass invasions? Partridge peas and fountain grass in Hawai’i. Ecography 25(1):33–41CrossRefGoogle Scholar
  8. Castro-Díez P, González-Muñoz N, Alonso A, Gallardo A, Poorter L (2009) Effects of exotic invasive trees on nitrogen cycling: a case of study in Central Spain. Biol Invasions 11:1973–1986CrossRefGoogle Scholar
  9. Castro-Díez P, Fierro-Brunnenmeister N, González-Muñoz N, Gallardo A (2012) Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant Soil 350:179–191CrossRefGoogle Scholar
  10. Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143(1):191–200CrossRefGoogle Scholar
  11. Dassonville N, Vanderhoeven S, Vanparys V, Hayez M, Gruber W, Meerts P (2008) Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 157:131–140PubMedCrossRefGoogle Scholar
  12. Eckstein RL, Karlsson PS, Weih M (1999) Leaf life span and nutrient resorption as determinants of plant nutrient conservation in Temperate-Artic regions. New Phytol 143(1):177–189CrossRefGoogle Scholar
  13. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6):503–523CrossRefGoogle Scholar
  14. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80CrossRefGoogle Scholar
  15. Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol Appl 11(5):1301–1310CrossRefGoogle Scholar
  16. Gallardo A, Merino JM (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74(1):152–161CrossRefGoogle Scholar
  17. Godoy O, Castro-Díez P, Van Logtestijn RSP, Cornelissen JHP, Valladares F (2010) Leaf traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia 162:781–790PubMedCrossRefGoogle Scholar
  18. González E (2010) Contribution to the ecology of the Middle Ebro riparian woodlands: implications for management. Dissertation, University of AlcaláGoogle Scholar
  19. Guerra A, Monturiol F (1970) Memoria explicativa del mapa provincial de suelos de Guadalajara. Escala 1:250.000. CSIC, MadridGoogle Scholar
  20. Haubensak KA, Parker IM (2004) Soil changes accompanying invasion of the exotic shrub Cytisus scoparius in glacial outwash prairies of western Washington (USA). Plant Ecol 175(1):71–79CrossRefGoogle Scholar
  21. Hughes RF, Denslow JS (2005) Invasion by a N2-fixing tree alters function and structure in wet lowland forest of Hawai’i. Ecol Appl 15(5):1615–1628CrossRefGoogle Scholar
  22. Kalmbacher R, Martin F (1996) Shifts in botanical composition of flatwoods range following fertilization. J Range Manage 49(6):530–534CrossRefGoogle Scholar
  23. Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83(11):3152–3166CrossRefGoogle Scholar
  24. Lara F, Garillete R, Ramírez P (1996) Estudio de la vegetación de los ríos carpetanos de la cuenca del Jarama. Centro de Estudios y Experimentación de Obras Públicas. Ministerio de Fomento, MadridGoogle Scholar
  25. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379PubMedCrossRefGoogle Scholar
  26. Leishman MR, Haslehurst T, Ares A (2007) Leaf trait relationships of native and invasive plants: community and global-scale comparisons. New Phytol 176(3):635–643PubMedCrossRefGoogle Scholar
  27. Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis SL (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Biol Sci 270:775–781PubMedCrossRefGoogle Scholar
  28. Liao Ch, Yiqi L, Fang Ch, Chen J, Li B (2008) Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora- invaded and native coastal marshlands of the Yangtze Estuary. Oecologia 156:589–600PubMedCrossRefGoogle Scholar
  29. Mack MC, D’Antonio CM, Ley RE (2001) Alteration of ecosystem nitrogen dynamics by exotic plants: a case of study of C4 grasses in Hawaii. Ecol Appl 11(5):1323–1335Google Scholar
  30. Malcolm GM, Bush DS, Rice SK (2008) Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robinia pseudoacacia) stands in a Pine-Oak ecosystem. Restor Ecol 16(1):70–78CrossRefGoogle Scholar
  31. Marchante E, Kjoller A, Struwe S, Freitas H (2008) Short- and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl Soil Ecol 40:210–217CrossRefGoogle Scholar
  32. Marchante E, Kjoller A, Struwe S, Freitas HS (2009) Soil recovery after removal of the N2-fixing invasive Acacia longifolia: consequences for ecosystem restoration. Biol Invasions 11:813–823CrossRefGoogle Scholar
  33. Maron JL, Connors PG (1996) A native nitrogen-fixing species facilitates weed invasion. Oecologia 105(3):302–312CrossRefGoogle Scholar
  34. Matus G, Tóthmérész B, Papp M (2003) Restoration prospects of abandoned species-rich sandy grassland in Hungary. Appl Veg Sci 6(2):169–178Google Scholar
  35. Milla R, Castro-Díez P, Maestro-Martínez M, Montserrat-Martí G (2005) Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytol 168:167–178PubMedCrossRefGoogle Scholar
  36. Montagnini F, Haines BL, Boring LR, Swank WT (1986) Nitrification potentials in early successional black locust and mixed hardwood forest in the southern Appalachians, USA. Biogeochemistry 2:197–210CrossRefGoogle Scholar
  37. Montagnini F, Haines B, Swank WT (1991) Soil solution chemistry in black locust, pine-hardwoods and oak-hickory forest stands in the southern Appalachians. Forest Ecol Manage 40:199–208CrossRefGoogle Scholar
  38. Monturiol F, Alcalá L (1990) Mapa de Asociaciones de suelos de la Comunidad de Madrid. Escala 1:200.000. CSIC y Comunidad de Madrid, MadridGoogle Scholar
  39. O’Neill RV, DeAngelis DL (1981) Comparative productivity and biomass relations of forest ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge, pp 441–449Google Scholar
  40. Paschke MW, McLendon T, Redente EF (2000) Nitrogen availability and old-field sucession in a shortgrass steppe. Ecosystems 3(2):144–158CrossRefGoogle Scholar
  41. Peloquin RL, Hiebert RD (1999) The effects of black locust (Robinia pseudoacacia L.) on species diversity and composition of black oak savannah/woodland communities. Nat Areas J 19:121–131Google Scholar
  42. Rice SK, Westerman B, Federici R (2004) Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen cycling in a pine-oak ecosystem. Ecology 174(1):97–107Google Scholar
  43. Sanz Elorza M, Dana Sánchez ED, Sobrino Vespertinas E (2004) Atlas de plantas alóctonas invasoras en España. Ministerio de Medio Ambiente, MadridGoogle Scholar
  44. Scott NA, Saggar S, McIntosh PD (2001) Biogeochemical impact of Heracium invasion in New Zealand’s grazed tussock grasslands: sustainability implications. Ecol Appl 11(5):1311–1322CrossRefGoogle Scholar
  45. Seabloom EW, Harpole WS, Reichman OJ, Tilman D (2003) Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc Natl Acad Sci USA 100(23):13384–13389PubMedCrossRefGoogle Scholar
  46. Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9(8):912–919PubMedCrossRefGoogle Scholar
  47. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  48. Soudzilovskaia NA, Onipchenko VG, Cornelissen JHC, Aerts R (2005) Biomass production, N:P ratio and nutrient limitation in a Caucasian alpine tundra plant community. J Veg Sci 16(4):399–406CrossRefGoogle Scholar
  49. Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102(12):4387–4392PubMedCrossRefGoogle Scholar
  50. Swan CM, Healey B (2008) The role of native riparian tree species in decomposition of invasive tree of heaven (Ailanthus altissima) leaf litter in an urban stream. Ecoscience 15(1):27–35CrossRefGoogle Scholar
  51. Tateno R, Tokuchi N, Yamanaka N, Du S, Otsuki K, Shimamura T, Xue Z, Wang S, Hou Q (2007) Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near yan’an on the Loess Plateau, China. For Ecol Manag 241:84–90CrossRefGoogle Scholar
  52. Tuttle NC, Beard KH, Pitt WC (2009) Invasive litter, not an invasive insectivore, determines invertebrate communities in Hawaiian forests. Biol Invasions 11:845–855CrossRefGoogle Scholar
  53. Urgenson LS, Reichard SH, Halpern CB (2009) Community and ecosystem consequences of giant knotweed (Polygonum sachalinense) invasion into riparian forests of western Washington, USA. Biol Conserv 142:1536–1541CrossRefGoogle Scholar
  54. van Heerwaarden LM, Toet S, Aerts R (2003) Current measures of nutrient resorption efficiency lead to a substancial understimation of real resorption efficiency: facts and solutions. Oikos 101(3):664–669CrossRefGoogle Scholar
  55. Vanderhoeven S, Dassonville N, Meerts P (2005) Increased topsoil mineral nutrient concentrations under exotic invasive plants in Belgium. Plant Soil 275(1–2):169–179CrossRefGoogle Scholar
  56. Vilà M, Tessier M, Suehs CM, Brundu G, Carta L, Galanidis A, Lambdon P, Manca M, Médail F, Moragues E, Traveset A, Troumbis AY, Hulme PE (2006) Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J Biogeogr 33:853–861CrossRefGoogle Scholar
  57. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarosik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pysek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14(7):702–708PubMedCrossRefGoogle Scholar
  58. Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • N. González-Muñoz
    • 1
  • P. Castro-Díez
    • 1
  • I. M. Parker
    • 2
  1. 1.Departamento de EcologíaUniversidad de AlcaláMadridSpain
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of California, Santa CruzSanta CruzUSA

Personalised recommendations