Plant and Soil

, Volume 356, Issue 1–2, pp 291–293 | Cite as

John Featherstone Witty

1944 to 2009


  1. Ebert A, Brune A (1997) Hydrogen concentration profies at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046PubMedGoogle Scholar
  2. Giller KE, Witty JF (1987) Immobilized 15N-fertilizer sources improve the accuracy of field estimates of N2-fixation by isotope dilution. Soil Biol Biochem 19:459–463CrossRefGoogle Scholar
  3. Minchin FR, Witty JF (2004) Carbon costs of nitrogen fixation. Chapter 11. In: Lambers H, Ribas-Carbo M (eds) Plant respiration: from cell to ecosystem. Springer, Dordrecht, pp 192–205Google Scholar
  4. Minchin FR, Witty JF, Sheehy JE, Muller M (1983) A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions. J Exp Bot 34:641–649CrossRefGoogle Scholar
  5. Minchin FR, Sheehy JE, Witty JF (1986) Further errors in the acetylene reduction assay: effects of plant disturbance. J Exp Bot 37:1581–1591CrossRefGoogle Scholar
  6. Minchin FR, James EK, Becana M (2008) Oxygen diffusion, production of reactive oxygen and nitrogen species, and antioxidants in legume nodules. Chapter 11. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 321–362Google Scholar
  7. Sheehy JE, Minchin FR, Witty JF (1983) Biological control of the resistance to oxygen flux in nodules. Ann Bot 52:565–571Google Scholar
  8. Unkovich M, Baldock J (2008) Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biol Biochem 40:2915–2921CrossRefGoogle Scholar
  9. Unkovich M, Herridge D, Peoples M, Cadish G, Boddey B, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, Canberra, p 258Google Scholar
  10. Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen balance estimates. Soil Sci Soc Am J 56:105–114CrossRefGoogle Scholar
  11. Witty JF (1979) Acetylene reduction assay can overestimate nitrogen fixation in soil. Soil Biol Biochem 11:209–210CrossRefGoogle Scholar
  12. Witty JF (1983) Estimating N2-fixation in the field using 15N-labelled fertilizer: some problems and solutions. Soil Biol Biochem 15:631–639CrossRefGoogle Scholar
  13. Witty JF (1991) Microelectrode measurements of hydrogen concentration and gradients in legume nodules. J Exp Bot 42:765–771CrossRefGoogle Scholar
  14. Witty JF, Minchin FR (1994) A new method to detect the presence of continuous gas-filled pathways for oxygen diffusion in legume nodules. J Exp Bot 45:967–978CrossRefGoogle Scholar
  15. Witty JF, Minchin FR (1998a) Hydrogen measurements provide direct evidence for a variable physical barrier to gas diffusion in legume nodules. J Exp Bot 49:1015–1020Google Scholar
  16. Witty JF, Minchin FR (1998b) Methods for the continuous measurement of O2 consumption and H2 production by nodulated legume root systems. J Exp Bot 49:1041–1048Google Scholar
  17. Witty JF, Ritz K (1984) Slow release 15N fertilizer formulations to measure N2-fixation by isotope dilution. Soil Biol Biochem 16:657–661CrossRefGoogle Scholar
  18. Witty JF, Minchin FR, Sheehy JE (1983) Carbon csosts of nitrogenase activity in legume root nodules determined using acetylene and oxygen. J Exp Bot 34:951–963CrossRefGoogle Scholar
  19. Witty JF, Minchin FR, Sheehy JE, Minguez MI (1984) Acetylene-induced changes in the oxygen diffusion resistance and nitrogenase activity of legume root nodules. Ann Bot 53:12–20Google Scholar
  20. Witty JF, Skot L, Revsbech NP (1987) Direct evidence for changes in the resistance of legume root nodules to O2 diffusion. J Exp Bot 38:1129–1140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.RivermeadCeredigionUK
  2. 2.School Agriculture, Food and WineThe University of AdelaideGlen OsmondAustralia

Personalised recommendations