Advertisement

Plant and Soil

, Volume 358, Issue 1–2, pp 385–401 | Cite as

Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia

  • Macarena GerdingEmail author
  • Graham William O’Hara
  • Lambert Bräu
  • Kemanthie Nandasena
  • John Gregory Howieson
Regular Article

Abstract

Background and aims

Legumes of the genus Lessertia have recently been introduced to Australia in an attempt to increase the range of forage species available in Australian farming systems capable of dealing with a changing climate. This study assessed the diversity and the nodulation ability of a collection of Lessertia root nodule bacteria isolated from different agro-climatic areas of the Eastern and Western Capes of South Africa.

Methods

The diversity and phylogeny of 43 strains was determined via the partial sequencing of the dnaK, 16srRNA and nodA genes. A glasshouse experiment was undertaken to evaluate symbiotic relationships between six Lessertia species and 17 rhizobia strains.

Results

The dnaK and 16S rRNA genes of the majority of the strains clustered with the genus Mesorhizobium. The position of the strains at the intra-genus level was incongruent between phylogenies with few exceptions. The nodA genes from Lessertia spp. formed a cluster on their own, separate from the previously known Mesorhizobium nodA sequences. Strains showed differences in their nodulation and nitrogen fixation patterns that could be correlated with nodA gene phylogeny. L. diffusa, L. herbacea and L. excisa nodulated with nearly all the strains examined while L. capitata, L. incana and L. pauciflora were more stringent.

Conclusion

Root nodule bacteria from Lessertia spp. were identified mainly as Mesorhizobium spp. Their nodA genes were unique and correlated with the nodulation and nitrogen fixation patterns of the strains. There were marked differences in promiscuity within Lessertia spp. and within strains of root nodule bacteria.

Keywords

Mesorhizobium Lessertia capitata Lessertia excisa Lessertia diffusa Lessertia herbacea Lessertia incana Lessertia pauciflora Symbiotic nitrogen fixation 

Abbreviations

WSM

Western soil microbiology

OD

Optical density

½ LA

Half lupin agar

Notes

Acknowledgements

The authors would like to thank Mrs. Regina Carr (Centre for Rhizobium studies, Murdoch University) for technical assistance.

References

  1. Aguilar OM, López MV, Donato M, Morón B, Soria-Diaz ME, Mateos C, Gil-Serrano A, Sousa C, Megías M (2006) Phylogeny and nodulation signal molecule of rhizobial populations able to nodulate common beans—other than the predominant species Rhizobium etli—present in soils from the northwest of Argentina. Soil Biol Biochem 38:573–586CrossRefGoogle Scholar
  2. Alexandre A, Laranjo M, Young JPW, Oliveira S (2008) dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol 58:2839–2849PubMedCrossRefGoogle Scholar
  3. Allen ON, Allen EK (1981) The leguminosae: a source book of characteristics, uses and nodulation. The University of Wisconsin Press, Wisconsin, p 812Google Scholar
  4. Andam CP, Mondo SJ, Parker MA (2007) Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts. Appl Environ Microbiol 73:4686–4690PubMedCrossRefGoogle Scholar
  5. Anderson PML, Hoffmann MT (2007) The impacts of sustained heavy grazing on plant diversity and composition in lowland and upland habitats across the Kamiesberg mountain range in the Succulent Karoo, South Africa. J Arid Environ 70:686–700CrossRefGoogle Scholar
  6. Ba S, Willems A, De Lajudie P, Roche P, Jeder H, Quatrini P, Neyra M, Ferro M, Promé J-C, Gillis M, Boivin-Masson C, Lorquin J (2002) Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. Syst Appl Microbiol 25:130–145PubMedCrossRefGoogle Scholar
  7. Balkwill MJ, Balkwill K (1999) The genus Lessertia DC. (Fabaceae-Galegeae) in KwaZulu-Natal (South Africa). S Afr J Bot 65:339–356Google Scholar
  8. Boone CM, Olsthoorn MMA, Dakora FD, Spaink HP, Thomas-Oates JE (1999) Structural characterisation of lipo-chitin oligosaccharides isolated from Bradyrhizobium aspalati, microsymbionts of commercially important South African legumes. Carbohydr Res 317:155–163PubMedCrossRefGoogle Scholar
  9. Breebaart L (2003) Feeding selection in three grazing systems in the Nama Karoo. In Conservation Farming Project. National Botanical Institute, South AfricaGoogle Scholar
  10. Brenner DJ, Staley JT, Krieg NR (2005) Classification of procaryotic organisms and the concept of bacterial speciation. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 27–32CrossRefGoogle Scholar
  11. Broughton WJ, Perret X (1999) Genealogy of legume-Rhizobium symbiosis. Curr Opin Plant Biol 2:305–311PubMedCrossRefGoogle Scholar
  12. Chelo IM, Zé-Zé L, Tenreiro R (2007) Congruence of evolutionary relationships inside the Leuconostoc-Oenococcus-Weissella clade assessed by phylogenetic analysis of the 16SrRNA gene, dnaA, gyrB, rpoC and dnaK. Int J Syst Evol Microbiol 57:276–286PubMedCrossRefGoogle Scholar
  13. Chen W-M, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by β-Proteobacteria is widespread in nature. J Bacteriol 185:7266–7272PubMedCrossRefGoogle Scholar
  14. Chen WF, Guan SH, Zhao CT, Yan XR, Man CX, Wang ET, Chen WX (2008) Different Mesorhizobium species associated with Caragana carry similar symbiotic genes and have common host ranges. FEMS Microbiol Lett 283:203–209PubMedCrossRefGoogle Scholar
  15. Cocks PS (2001) Ecology of herbaceous perennial legumes: a review of characteristics that may provide management options for the control of salinity and waterlogging in dryland cropping systems. Aust J Agric Res 52:137–151CrossRefGoogle Scholar
  16. Cransberg L, McFarlane DJ (1994) Can perennial pastures provide the basis for a sustainable farming system in southern Australia? N Z J Agric Res 37:287–294CrossRefGoogle Scholar
  17. de Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence of nodulation in the Leguminosae. New Phytol 111:607–619CrossRefGoogle Scholar
  18. Dear BS, Moore GA, Hughes SJ (2003) Adaptation and potential contribution of temperate perennial legumes to the southern Australian wheatbelt: a review. Aust J Exp Agric 43:1–18CrossRefGoogle Scholar
  19. Donate-Correa J, León-Barrios M, Hernández M, Pérez-Galdona R, del Arco-Aguilar M (2007) Different Mesorhizobium species sharing the same symbiotic genes nodulate the shrub legume Anagyris latifolia. Syst Appl Microbiol 30:615–623PubMedCrossRefGoogle Scholar
  20. Doolittle WF, Papke RT (2006) Genomics and the bacterial species problem. Genome Biol 7:1–7CrossRefGoogle Scholar
  21. Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910PubMedCrossRefGoogle Scholar
  22. Eardly BD, Nour SM, Berkum PV, Selander RK (2005) Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae. Appl Environ Microbiol 71:1328–1335PubMedCrossRefGoogle Scholar
  23. Elliott GN, Chen W-M, Bontemps C, Chou J-H, Young JPW, Sprent JI, James EK (2007) Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot 100:1403–1411PubMedCrossRefGoogle Scholar
  24. Elliott GN, Chou J-H, Chen W-M, Bloemberg GV, Bontemps C, Martínez-Romero E, Velázquez E, Young JPW, Sprent JI, James EK (2009) Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 11:762–778PubMedCrossRefGoogle Scholar
  25. Gao J, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH, Gu J, Terefework Z, Young JPW, Lindström K, Chen WX (2004) Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54:2003–2012PubMedCrossRefGoogle Scholar
  26. Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41:125–134CrossRefGoogle Scholar
  27. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048PubMedCrossRefGoogle Scholar
  28. Han TX, Tian CF, Wang ET, Chen WX (2010) Associations among rhizobial chromosomal background, nod genes, and host plants based on the analysis of symbiosis of indigenous rhizobia and wild legumes native to Xinjiang. Microb Ecol 59Google Scholar
  29. Hanage WP, Fraser C, Spratt BG (2006) Sequences, sequence clusters and bacterial species. Phil Trans Roy Soc B 361:1917–1927CrossRefGoogle Scholar
  30. Harvey WH (1862) Leguminosae. In: Harvey WH, Sonder OW (eds) Flora capensis: systematic description of the plants of the Cape Colony, Caffraria and Port Natal. Vol. 2. Hodges, Smith and Co., Dublin, pp 1–285Google Scholar
  31. Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nodA and nifH Genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426PubMedGoogle Scholar
  32. Hirsch AM, Lum MR, Downie JA (2001) What makes the rhizobia-legume symbiosis so special? update on rhizobia-legume symbiosis. Plant Physiol 127:1484–1492PubMedCrossRefGoogle Scholar
  33. Howieson JG (1995) Characteristics of an ideotype acid tolerant pasture legume symbiosis in Mediterranean agriculture. Plant Soil 171:71–76CrossRefGoogle Scholar
  34. Howieson JG, Ewing MA, D'Antuono MF (1988) Selection for acid tolerance in Rhizobium meliloti. Plant Soil 105:179–188CrossRefGoogle Scholar
  35. Howieson JG, Loi A, Carr SJ (1995) Biserrula pelecinus L.—a legume pasture species with potential for acid, duplex soils which is nodulated by unique root-nodule bacteria. Aust J Agric Res 46:997–1009CrossRefGoogle Scholar
  36. Howieson JG, O'Hara GW, Carr SJ (2000) Changing roles for legumes in Mediterranean agriculture: developments from an Australian perspective. Field Crop Res 65:107–122CrossRefGoogle Scholar
  37. Howieson JG, Yates RJ, Foster KJ, Real D, Besier RB (2008) Prospects for the future use of legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 363–393Google Scholar
  38. Jarabo-Lorenzo A, Pérez-Galdona R, Donate-Correa J, Rivas R, Velázquez E, Hernández M, Temprano F, Martínez-Molina E, Ruiz-Argueso T, León-Barrios M (2003) Genetic diversity of bradyrhizobial populations from diverse geographic origins that nodulate Lupinus spp. and Ornithopus spp. Syst Appl Microbiol 26:611–623PubMedCrossRefGoogle Scholar
  39. Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernández MP, Cleyet-Marel J-C, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898CrossRefGoogle Scholar
  40. Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839PubMedCrossRefGoogle Scholar
  41. Joubert E, Gelderblom WCA, Louw A, de Beer D (2008) South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides—a review. J Ethnopharmacol 119:376–412PubMedCrossRefGoogle Scholar
  42. Kalita M, Stępkowski T, Lotocka B, Malek W (2006) Phylogeny of nodulation genes and symbiotic properties of Genista tinctoria bradyrhizobia. Arch Microbiol 186:87–97PubMedCrossRefGoogle Scholar
  43. Kobayashi H, Broughton WJ (2008) Fine-tuning of symbiotic genes in rhizobia: flavonoid signal transduction cascade. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 117–152Google Scholar
  44. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264PubMedCrossRefGoogle Scholar
  45. Kwon S-W, Park J-Y, Kim J-S, Kang J-W, Cho Y-H, Lim C-K, Parker MA, Lee G-B (2005) Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. Int J Syst Evol Microbiol 55:263–270PubMedCrossRefGoogle Scholar
  46. Laguerre G, Van Berkum P, Amarger N, Prévost D (1997) Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis. Appl Environ Microbiol 63:4748–4758PubMedGoogle Scholar
  47. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993PubMedGoogle Scholar
  48. Lecointre G, Le Guyader H (2006) The tree of life: a phylogenetic classification. The Belknap Press of Harvard University Press, MassachusettsGoogle Scholar
  49. Lindeque MI (2005) Diversity of root nodule bacteria associated with Phaseolus coccineus and Phaseolus vulgaris species in South Africa. MSc Thesis, University of Pretoria, Pretoria, South AfricaGoogle Scholar
  50. Lock JM, Schrire BD (2005) Tribe galegae. In: Lewis G, Schrire B, Mackinder B, Lock JM (eds) Legumes of the world. Royal Botanic Gardens, Kew, pp 475–487Google Scholar
  51. Martens M, Delaere M, Coopman R, De Vos P, Gillis M, Willems A (2007) Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503PubMedCrossRefGoogle Scholar
  52. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach A, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112PubMedCrossRefGoogle Scholar
  53. Maunoury N, Kondorosi A, Kondorosi E, Mergaert P (2008) Cell biology of nodule infection and development. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 153–189Google Scholar
  54. McArthur JV (2006) Microbial ecology: an evolutionary approach. Academic, San Diego, p 416Google Scholar
  55. Moschetti G, Peluso A, Protopapa A, Anastasio M, Pepe O, Defez R (2005) Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP–16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Syst Appl Microbiol 28:619–631PubMedCrossRefGoogle Scholar
  56. Moulin L, Béna G, Boivin-Masson C, Stępkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732PubMedCrossRefGoogle Scholar
  57. Muofhe ML, Dakora FD (1999) Nitrogen nutrition in nodulated field plants of the shrub tea legume Aspalathus linearis assessed using 15N natural abundance. Plant Soil 209:181–186CrossRefGoogle Scholar
  58. Nandasena KG, O'Hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Syst Evol Microbiol 59:2140–2147PubMedCrossRefGoogle Scholar
  59. Nkonki T (2003) Lessertia DC. National Botanical Institute (South Africa), PretoriaGoogle Scholar
  60. Nkonki T (2004) Lessertia DC. National Herbarium, Pretoria. http://www.plantzafrica.com/plantklm/lessertia.htm. Accessed 24 July 2008
  61. Nour SM, Cleyet-Marel J-C, Normand P, Fernández MP (1995) Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648PubMedCrossRefGoogle Scholar
  62. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304PubMedCrossRefGoogle Scholar
  63. Olsen GJ, Woese CR, Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6PubMedGoogle Scholar
  64. Ormeño-Orrillo E, Vinuesa P, Zúñiga-Dávila D, Martínez-Romero E (2006) Molecular diversity of native bradyrhizobia isolated from Lima bean (Phaseolus lunatus L.) in Peru. Syst Appl Microbiol: 253–262Google Scholar
  65. Parker MA (2004) rRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica. Syst Appl Microbiol 27:334–342PubMedCrossRefGoogle Scholar
  66. Parker MA, Kennedy DA (2006) Diversity and relationships of bradyrhizobia from legumes native to eastern North America. Can J Microbiol 52:1148–1157PubMedCrossRefGoogle Scholar
  67. Parker MA, Lafay B, Burdon JJ, van Berkum P (2002) Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobium. Microbiology 148:2557–2565PubMedGoogle Scholar
  68. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201PubMedCrossRefGoogle Scholar
  69. Reeve WG, Chain P, O'Hara GW, Ardley JK, Nandasena KG, Bräu L, Tiwari RP, Malfatti S, Kiss H, Lapidus A, Copeland A, Nolan M, Land M, Hauser L, Chang Y-J, Ivanova N, Mavromatis K, Markowitz V, Kyrpides N, Gollagher M, Yates RJ, Dilworth MJ, Howieson JG (2010) Complete genome sequencing of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Stand Genomic Sci 2:77–86PubMedCrossRefGoogle Scholar
  70. Richardson AE, Viccars LA, Watson JM, Gibson AH (1995) Differentiation of Rhizobium strains using the polymerase chain reaction with random and directed primers. Soil Biol Biochem 27:515–524CrossRefGoogle Scholar
  71. Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Truchet G, Prome J-C, Denarie J (1996) The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci U S A 93:15305–15310PubMedCrossRefGoogle Scholar
  72. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  73. Stępkowski T, Czaplińska M, Miedzinska K, Moulin L (2003a) The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha proteobacteria. Syst Appl Microbiol 26:483–494PubMedCrossRefGoogle Scholar
  74. Stępkowski T, Świderska A, Miedzinska K, Czaplińska M, Świderski M, Biesiadka J, Legocki AB (2003b) Low sequence similarity and gene content of symbiotic clusters of Bradyrhizobium sp. WM9 (Lupinus) indicate early divergence of “lupin” lineage in the genus Bradyrhizobium. Antonie Leeuwenhoek 84:115–124PubMedCrossRefGoogle Scholar
  75. Stępkowski T, Moulin L, Krzyżańska A, McInnes A, Law IJ, Howieson J (2005) European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl Environ Microbiol 71:7041–7052PubMedCrossRefGoogle Scholar
  76. Stępkowski T, Hughes CE, Law IJ, Markiewicz L, Gurda D, Chlebicka A, Moulin L (2007) Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 73:3254–3264PubMedCrossRefGoogle Scholar
  77. Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 92:8985–8989PubMedCrossRefGoogle Scholar
  78. Suominen L, Roos C, Lortet G, Paulin L, Lindström K (2001) Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. Mol Biol Evol 18:907–916PubMedCrossRefGoogle Scholar
  79. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS 101:11030–11035PubMedCrossRefGoogle Scholar
  80. Tamura K, Dudley J, Nei M, Kumar S (2007) Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. doi: 10.1093/molbev/msm092
  81. van Berkum P, Terefework Z, Paulin L, Suomalainen S, Lindström K, Eardly BD (2003) Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185:2988–2998PubMedCrossRefGoogle Scholar
  82. Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005a) Bradyrhizobium canariense sp. nov., an acid tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575PubMedCrossRefGoogle Scholar
  83. Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005b) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54PubMedCrossRefGoogle Scholar
  84. Wei GH, Chen WM, Young JPW, Bontemps C (2009) A new clade of Mesorhizobium nodulating Alhagi sparsifolia system. Appl Microbiol 32:8–16CrossRefGoogle Scholar
  85. Wernegreen JJ, Riley MA (1999) Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16:98–113PubMedCrossRefGoogle Scholar
  86. Wernegreen JJ, Harding EE, Riley MA (1997) Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum. Proc Natl Acad Sci U S A 94:5483–5488PubMedCrossRefGoogle Scholar
  87. Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14CrossRefGoogle Scholar
  88. Yan XR, Chen WF, Fu JF, Lu YL, Xue CY, Sui XH, Li Y, Wang ET, Chen WX (2007) Mesorhizobium spp. are the main microsymbionts of Caragana spp. grown in Liaoning Province of China. FEMS Microbiol Lett 271:265–273PubMedCrossRefGoogle Scholar
  89. Yanagi M, Yamasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120PubMedCrossRefGoogle Scholar
  90. Yates RJ (2008) Symbiotic interactions of geographically diverse annual and perennial Trifolium spp. with Rhizobium leguminosarum bv. trifolii. PhD thesis, Murdoch University, Perth, AustraliaGoogle Scholar
  91. Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900PubMedCrossRefGoogle Scholar
  92. Zhang XX, Kosier B, Priefer UB (2001) Genetic diversity of indigenous Rhizobium leguminosarum bv. viciae isolates nodulating two different host plants during soil restoration with alfalfa. Mol Ecol 10:2297–2305PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Macarena Gerding
    • 1
    Email author
  • Graham William O’Hara
    • 2
  • Lambert Bräu
    • 3
  • Kemanthie Nandasena
    • 2
  • John Gregory Howieson
    • 2
  1. 1.Facultad de Agronomía, Universidad de ConcepciónChillánChile
  2. 2.Centre for Rhizobium Studies, Murdoch UniversityPerthAustralia
  3. 3.Deakin University, School of Life and Environmental SciencesBurwoodAustralia

Personalised recommendations