Advertisement

Plant and Soil

, Volume 356, Issue 1–2, pp 175–196 | Cite as

Herbaspirillum-plant interactions: microscopical, histological and molecular aspects

  • Rose Adele Monteiro
  • Eduardo Balsanelli
  • Roseli Wassem
  • Anelis M. Marin
  • Liziane C. C. Brusamarello-Santos
  • Maria Augusta Schmidt
  • Michelle Z. Tadra-Sfeir
  • Vânia C. S. Pankievicz
  • Leonardo M. Cruz
  • Leda S. Chubatsu
  • Fabio O. Pedrosa
  • Emanuel M. Souza
Review Article

Abstract

Diazotrophic species in the genus Herbaspirillum (e.g. H. frisingense, H. rubrisubalbicans and H. seropedicae) associate with several economically important crops in the family Poaceae, such as maize (Zea mays), Miscanthus, rice (Oryza sativa), sorghum (Sorghum bicolor) and sugarcane (Saccharum sp.), and can increase their growth and productivity by a number of mechanisms, including nitrogen fixation. Hence, the improvement and use of these plant growth-promoting bacteria could provide economic and environmental benefits. We review the colonization processes of host plants by Herbaspirillum spp., including histological aspects and molecular mechanisms involved in these interactions, which may be epiphytic, endophytic, and even occasionally pathogenic. Herbaspirillum can recognize plant signals that modulate the expression of colonization traits and plant growth-promoting factors. Although a large proportion of herbaspirilla remain rhizospheric and epiphytic, plant-associated species in this genus are noted for their ability to colonize the plant internal tissues. Endophytic colonization by herbaspirilla begins with the attachment of the bacteria to root surfaces, followed by colonization at the emergence points of lateral roots and penetration through discontinuities of the epidermis; this appears to involve bacterial envelope structures, such as lipopolysaccharide (LPS), exopolysaccharide (EPS), adhesins and the type three secretion system (T3SS), but not necessarily the involvement of cell wall-degrading enzymes. Intercellular spaces are then rapidly occupied, proceeding to colonization of xylem and the aerial parts of the host plants. The response of the host plant includes both the recognition of the bacteria as non-pathogenic and the induction of systemic resistance to pathogens. Phytohormone signaling cascades are also activated, regulating the plant development. This complex molecular communication between some Herbaspirillum spp. and plant hosts can result in plant growth-promotion.

Keywords

Herbaspirillum Plant-Bacteria Interaction Biological nitrogen fixation 

Notes

Acknowledgements

We thank M.G. Yates for critical reading of the manuscript. We also thank the anonymous reviewers who have contributed substantially to improve this work. We thank Euan James for kindly providing Fig. 3. We thank the financial support of National Institute of Science and Technology on Biological Nitrogen Fixation (INCT-FBN/CNPq-MCT), CAPES and Fundação Araucária.

References

  1. Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611PubMedCrossRefGoogle Scholar
  2. Alfano JR, Collmer A (1997) The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins and death. J Bacteriol 179:5655–5662PubMedGoogle Scholar
  3. Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9CrossRefGoogle Scholar
  4. Aragno M, Schlegel HG (1978) Aquaspirillum autotrophicum, a new species of hydrogen-oxidizing, facultatively autotrophic bacteria. Int J Syst Bacteriol 28:112–116CrossRefGoogle Scholar
  5. Arencibia AD, Vinagre F, Estevez Y, Bernal A, Perez J, Cavalcanti J, Santana I, Hemerly AS (2006) Gluconacetobacter diazotrophicus elicits a sugarcane defense response against a pathogenic bacteria Xanthomonas albilineans. Plant Signal Behav 1:265–273PubMedCrossRefGoogle Scholar
  6. Bae HS, Yamagishi T, Suwa Y (2004) An anaerobic continuous-flow fixed-bed reactor sustaining a 3-chlorobenzoate-degrading denitrifying population utilizing versatile electron donors and acceptors. Chemosphere 55:93–100PubMedCrossRefGoogle Scholar
  7. Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen fixing bacterium. Int J Sys Bacteriol 36:86–93CrossRefGoogle Scholar
  8. Baldani VLD, Baldani JI, Olivares FL, Dobereiner J (1992) Identification and ecology of Herbaspirillum seropedicae and closely related Pseudomonas rubrisubalbicans. Symbiosis 13:65–73Google Scholar
  9. Baldani JI, Pot B, Kirchhof G, Falsen E, Baldani VLD, Olivares FL, Hoste B, Kersters K, Hartmann A, Gillis M, Dobereiner J (1996) Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF Group 1) as Herbaspirillum Species 3. Int J Syst Bacteriol 46:802–810PubMedCrossRefGoogle Scholar
  10. Baldani JI, Caruso L, Baldani VLD, Goi SR, Dobereiner J (1997) recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922CrossRefGoogle Scholar
  11. Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia sp. Biol Fertil Soils 30:485–491CrossRefGoogle Scholar
  12. Balsanelli E, Serrato RV, de Baura VA, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, de Souza EM, Monteiro RA (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12:2233–2244PubMedGoogle Scholar
  13. Bashan Y, De-Bashan LE (2005) Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: a critical examination. Soil Biol Biochem 37:1795–1804CrossRefGoogle Scholar
  14. Bashan Y, Levanony H, Klein E (1986) Evidence for a weak active external adsorption of Azospirillum brasilense Cd to wheat roots. J Gen Microbiol 132:3069–3073Google Scholar
  15. Bashan Y, Holguin G, de-Bashan L (2004) Azospirillum-plant relationships: physiological molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577PubMedCrossRefGoogle Scholar
  16. Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11CrossRefGoogle Scholar
  17. Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53CrossRefGoogle Scholar
  18. Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685PubMedCrossRefGoogle Scholar
  19. Bertalan M, Albano R, Pádua V, Rouws L et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450PubMedCrossRefGoogle Scholar
  20. Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209PubMedCrossRefGoogle Scholar
  21. Boddey R (1999) Green energy from sugar cane. Chem Ind 17:355–358Google Scholar
  22. Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209CrossRefGoogle Scholar
  23. Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47PubMedCrossRefGoogle Scholar
  24. Büttner D, Bonas U (2002) Getting across – bacteria type III effector proteins on their way to the plant cell. EMBO J 21:5313–5322PubMedCrossRefGoogle Scholar
  25. Canuto EL, Oliveira ALM, Reis VM, Baldani JI (2003) Evaluation of the biological nitrogen fixation contribution in sugarcane plants originated from seeds and inoculated with nitrogen-fixing endophytes. Braz J Microbiol 34:62–64CrossRefGoogle Scholar
  26. Carro L, Rivas R, León-Barrios M, González-Tironte M, Velásquez E, Valverde A (2011) Herbaspirillum canariense sp. nov., Herbaspirillum aurantiacum sp. nov. and 2 Herbaspirillum soli sp. nov., three new species isolated in Tenerife (Canary Islands). IJSEM doi: 10.1099/ijs.0.031336-0
  27. Cavalcante JJV, Vargas C, Nogueira EM, Vinagre F, Schwarcz K, Baldani JI, Ferreira PCG, Hemerly AS (2007) Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. J Exp Bot 58:673–686PubMedCrossRefGoogle Scholar
  28. Chahboune A, Decaffmeyer M, Brasseur R, Joris B (2005) Membrane topology of the Escherichia coli AmpG permease required for recycling of cell wall anhydromuropeptides and AmpC-lactamase induction. Antimicrob Agents Chemother 49:1145–1149PubMedCrossRefGoogle Scholar
  29. Chaves DF, de Souza EM, Monteiro RA, Pedrosa FO (2009) A two-dimensional electrophoretic profile of the proteins secreted by Herbaspirillum seropedicae strain Z78. J Proteomics 73:50–56PubMedCrossRefGoogle Scholar
  30. Chen J, Su Z, Liu Y, Sandoghchian S, Zheng D, Wang S, Xu (2011) Herbaspirillum species: A potential pathogenic bacteria isolated from acute lymphoblastic leukemia patient. Curr Microbiol 62:331–333PubMedCrossRefGoogle Scholar
  31. Collmer A, Berman P, Mount MS (1982) Pectate lyase regulation and bacterial soft-rot pathogenesis. In: Mount MS, Lacy GH (eds) Phytopathogenic prokaryotes. Academic Press, New York, pp 395–422Google Scholar
  32. Cruz LM, Souza EM, Weber OB, Baldani JI, Döbereiner J, Pedrosa FO (2001) 16S Ribosomal DNA characterization of nitrogen-fixing Bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril). Appl Environ Microbiol 67:2375–2379CrossRefGoogle Scholar
  33. da Silva LG, Miguens FC, Olivares FL (2003) Herbaspirillum seropedicae and sugarcane endophytic interaction investigated by using high pressure freezing electron microscopy. Braz J Microbiol 34:69–71CrossRefGoogle Scholar
  34. da Silva RM, Caugant DA, Eribe ERK, Jorn A, Lingaas PS, Geiran O, Tronstad L, Olsen I (2006) Bacterial diversity in aortic aneurysms determined by 16S ribosomal RNA gene analysis. J Vasc Surg 44:1055–1060CrossRefGoogle Scholar
  35. Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Díaz MES, Serrano AMG, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721CrossRefGoogle Scholar
  36. Dean RA, Timberlake WA (1989) Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants. Plant Cell 1:265–273PubMedGoogle Scholar
  37. Ding L, Yokota A (2004) Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 54:2223–2230PubMedCrossRefGoogle Scholar
  38. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  39. Dobereiner J, Baldani VLD, Olivares FL, Reis VM (1994) Endophytic diazotrophs: the key to BNF in gramineous plants. In: Hegazani NA, Fayez M, Monib M (eds) Nitrogen fixation with non-legumes. American University in Cairo Press, CairoGoogle Scholar
  40. Dobereiner J, Baldani VLD, Reis VM (1995) Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Fendrik J, del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms. Springer-Verland, Berlin, pp 3–14CrossRefGoogle Scholar
  41. Döbereiner J, Pimentel JP, Olivares FL, Urquiaga S (1990) Bactérias diazotróficas podem ser endofíticas ou fitopatogênicas? An Acad Bras Cienc 62:319Google Scholar
  42. Dobritsa AP, Reddy MCS, Samadpour M (2010) Reclassification of Herbaspirillum putei as a later heterotypic synonym of Herbaspirillum huttiense, with the description of H. huttiense subsp. huttiense subsp. nov. and H. huttiense subsp. putei subsp. nov., comb. nov., and description of Herbaspirillum aquaticum sp. nov. Int J Syst Evol Microbiol 60:1418–1426PubMedCrossRefGoogle Scholar
  43. Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66:2804–2810PubMedCrossRefGoogle Scholar
  44. Elbeltagy A, Nishioka K, Sato T (2001) Endophytic colonization and in plant nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293PubMedCrossRefGoogle Scholar
  45. Fouts DE, Abramovitch RB, Alfano JR, Baldo AM, Robin Buell C, Cartinhour S, Chatterjee AK, D’ascenzo M, Gwinn ML, Lazarowitz SG, Lin N, Martin GB, Rehm AH, Schneider DJ, Dijk K, Tang X, Collmer A (2002) Genome-wide identification of Pseudomonas syringae pv. Tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc Natl Acad Sci USA 99:2275–2280PubMedCrossRefGoogle Scholar
  46. Galli F, Carvalho PCT, Tokeshi H, Balmer F, KimatI H, Cardoso CO, Salgaso CL, Krugner TL, Cardoso EJBN, Bergamin FA (1980) Manual de fitopatologia: doenças de plantas cultivadas. Agronômica Ceres, São PauloGoogle Scholar
  47. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68PubMedCrossRefGoogle Scholar
  48. Gopalan S, Bauer DW, Alfano JR, Loniello AO, He SY, Collmer A (1996) Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8:1095–1105PubMedGoogle Scholar
  49. Gough C, Galera C, Vasse J, Webster G, Cocking EC, Dénarié J (1997) Root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. Mol Plant Microbe Interact 10:560–570PubMedCrossRefGoogle Scholar
  50. Grant SR, Fisher E, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60:425–449PubMedCrossRefGoogle Scholar
  51. Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus giganteus. Angew Bot 67:87–90Google Scholar
  52. Guimarães SL, Baldani JI, Baldani VLD (2003) Efeito da inoculação de bactérias diazotróficas endofíticas em arroz de sequeiro. Revista Agronomia 37(2):25–30Google Scholar
  53. Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145CrossRefGoogle Scholar
  54. Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep 2:376–381PubMedGoogle Scholar
  55. Hale CN, Wilkie JP (1972) Bacterial leaf stripe of sorghum in New Zealand. N Z J Agricul Res 15:457–460CrossRefGoogle Scholar
  56. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  57. He SY, Nomura K, Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694:181–206PubMedCrossRefGoogle Scholar
  58. Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239PubMedCrossRefGoogle Scholar
  59. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433PubMedGoogle Scholar
  60. Im WT, Bae HS, Yokota A, Lee ST (2004) Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. Int J Syst Evol Microbiol 54:851–855PubMedCrossRefGoogle Scholar
  61. Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085PubMedCrossRefGoogle Scholar
  62. Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H (2010) Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environm 25(1):58–61CrossRefGoogle Scholar
  63. Islam MR, Madhaiyan M, Boruah HPD, Yim W, Lee G, Saravanan VS, Fu Q, Hu H, Sa T (2009) Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. J Microbiol Biotechnol 19:1213–1222PubMedCrossRefGoogle Scholar
  64. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209CrossRefGoogle Scholar
  65. James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. CRC Crit Rev Plant Sci 17:77–119CrossRefGoogle Scholar
  66. James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766CrossRefGoogle Scholar
  67. James EK, Olivares FL, Baldani JI, Dobereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench J Exp Bot 48:785–797CrossRefGoogle Scholar
  68. James EK, Gyaneshwar G, Barraquio WL, Ladha JK (1999) Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PN (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, ManilaGoogle Scholar
  69. James EK, Gyaneshwar P, Mathan N (2002) Infection and colonization of rice seedlings by the plant growth-promotion bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906PubMedCrossRefGoogle Scholar
  70. Jofré E, Lagares A, Mori G (2004) Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production and root colonization in Azospirillum brasilense. FEMS Microbiol 231:267–275CrossRefGoogle Scholar
  71. Jones JDG, Dangl JL (2006) The plant immune system. Nature 44:323–329CrossRefGoogle Scholar
  72. Jung SY, Lee MH, Oh TK, Yoon JH (2007) Herbaspirillum rhizosphaerae sp. nov., isolated from rhizosphere soil of Allium victorialis var. platyphyllum. Int J Syst Evol Microbiol 57:2284–2288PubMedCrossRefGoogle Scholar
  73. Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H et al (2010) Complete Genomic Structure of the Cultivated Rice Endophyte Azospirillum sp. B510. DNA Res 17:37–50PubMedCrossRefGoogle Scholar
  74. Kannenberg EL, Reuhs BL, Forsberg LS, Carlson RW (1998) Lipopolysaccharides and K-antigens: their structure, biosynthesis and functions. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiacea. Kluwer Academic Publisher, Dordrecht, p 154Google Scholar
  75. Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168PubMedGoogle Scholar
  76. Kloepper JW, Tuzun S, Kuc JA (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Technol 2:349–351CrossRefGoogle Scholar
  77. Klug E, Orth WD (1997) Renewable raw materials out of reposition plants on contaminated and on devastated grounds. In: Sustainable Agriculture for Food, Energy and Industry, Book of Abstracts. Bassam NEL, Bacher W, Korte AM, Prochnow B. Braunschweig: Federal Agriculture Research CentreGoogle Scholar
  78. Koebnik R (2005) TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol 13:343–347PubMedCrossRefGoogle Scholar
  79. Kovtunovych G, Lar O, Kamalova S, Kordyum V, Kleiner D, Kozyrovska N (1999) Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN 13 to penetrate into plant tissues. Plant Soil 215:1–6CrossRefGoogle Scholar
  80. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Boehm M, Friedrich F, Hurek T, Krause L et al (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391PubMedCrossRefGoogle Scholar
  81. Kuklinsky-Sobral J, Araujo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99CrossRefGoogle Scholar
  82. Lanham PG, McIlravey KI, Perombelon MCM (1991) Production of cell wall dissolving enzymes by Erwinia carotovora subsp. atroseptica in vitro at 27°C and 30.5°C. J Appl Bacteriol 70:20–24CrossRefGoogle Scholar
  83. Leifson E (1962) The bacterial flora of distilled and stored water. III. New species of the genera Corynebacterium, Flavobacterium, Spirillum and Pseudomonas. Int Bull Bacteriol Nomencl Taxon 12:161–170CrossRefGoogle Scholar
  84. Leister RT, Ausubel FM, Katagiri F (1996) Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proc Natl Acad Sci USA 93:15497–15502PubMedCrossRefGoogle Scholar
  85. Lindgren PB, Peet RC, Panopoulos NJ (1986) Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J Bacteriol 168:512–522PubMedGoogle Scholar
  86. Malik KA, Rakhshanda B, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar Grass and rice. Plant Soil 194:37–44CrossRefGoogle Scholar
  87. Mathesius U, Mulders S, Gao M, TeplitskI M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449PubMedCrossRefGoogle Scholar
  88. McCully ME (2001) Niches for bacterial endophytes in crop plants: a plant biologist’s view. Aust J Plant Physiol 28:983–990Google Scholar
  89. Mehdipour-Moghaddam MJ, Emtiazi G, Bouzari M, Mostajeran A, Salehi Z (2010) Novel phytase and cellulase activities in endophytic Azospirilla. W Appl Sci J 10(10):1129–1135Google Scholar
  90. Michiels KW, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137:2241–2246Google Scholar
  91. Monteiro RA, Schmidt MA, de Baura VA, Balsanelli E, Wassem R, Yates MG, Randi MAF, Pedrosa FO, de Souza EM (2008) Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genet Mol Biol 31:932–937CrossRefGoogle Scholar
  92. Mota LJ, Sorg I, Cornelis GR (2005) Type III secretion: the bacteria-eukaryotic cell express. FEMS Microbiol Lett 252:1–10PubMedCrossRefGoogle Scholar
  93. Mount MS (1978) Tissue is disintegrated. In: Horsfall JG, Cowling EB (eds) Plant disease, an advanced treatise. Academic, New York, pp 279–297Google Scholar
  94. Nogueira EM, Vinagre F, Masuda HP, Vargas C, Padua VLM, Silva FR, Santos RV, Baldani JI, Ferreira PCG, Hemerly AS (2001) Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genet Mol Biol 24:199–206CrossRefGoogle Scholar
  95. Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves predominantly of Gramineae. Biol Fertil Soils 21:197–200CrossRefGoogle Scholar
  96. Olivares FL, James EK, Baldani JI, Döbereiner J (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytol 135:575–597CrossRefGoogle Scholar
  97. Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215CrossRefGoogle Scholar
  98. Oliveira ALM, de Lima CE, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32CrossRefGoogle Scholar
  99. Oliveira ALM, Stoffels M, Schmid M, Reis VM, Baldani JI, Hartmann A (2009) Colonisation of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106–113CrossRefGoogle Scholar
  100. Ormeño-Orrilo E, Rosenblueth M, Luyten E, Vanderleyden J, Martinez-Romero E (2008) Mutations in lipopolysaccharides biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. Environ Microbiol 10:1271–1284CrossRefGoogle Scholar
  101. Palleroni NJ (1984) Genus I. Pseudomonas. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol. 1. The Williams & Wilkins Co, Baltimore, pp 141–199Google Scholar
  102. Patriquin DG, Gracioli LA, Ruschel AP (1980) Nitrogenase activity of sugar cane propagated from stem cuttings in sterile vermiculite. Soil Biol Biochem 12:413–417CrossRefGoogle Scholar
  103. Patriquin DG, Döbereiner J, Jain DK (1983) Sites and processes of association between diazotrophs and grasses. Can J Microbiol 29:900–915CrossRefGoogle Scholar
  104. Paulsen IT et al (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878PubMedCrossRefGoogle Scholar
  105. Pedrosa FO, Teixeira KRS, Machado IMP, Steffens MBR, Klassen G, Benelli EM, Machado HB, Funayama S, Rigo LU, Ishida ML, Yates MG, Souza EM (1997) Structural organization and regulation of the nif genes of Herbaspirillum seropedicae. Soil Biol Biochem 29:843–846CrossRefGoogle Scholar
  106. Pedrosa FO, Monteiro RA, Wassem R, Cruz LM et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genetics. doi: 10.1371/journal.pgen.1002064
  107. Pimentel JP, Olivares FL, Pitard R, Urquiaga S, Akiba F, Döbereiner J (1991) Dinitrogen fixation and infection of grass leaves by Pseudomonas rubrisubalbicans and Herbaspirillum seropedicae. Plant Soil 137:61–65CrossRefGoogle Scholar
  108. Plazinski J, Rolfe BG (1985) Analysis of the pectolytic activity of Rhizobium and Azospirillum strains isolated from Trifolium repens. J Plant Physiol 120:181–187CrossRefGoogle Scholar
  109. Reddy PM, James EK, Ladha JK (2002) Nitrogen fixation in rice. In: Leigh GJ (ed) Nitrogen fixation at the millennium. Elsevier, Amsterdam, pp 421–445CrossRefGoogle Scholar
  110. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144PubMedCrossRefGoogle Scholar
  111. Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, de Ley J (1993) Azoarcus gen. nov., nitrogen fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov., and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584CrossRefGoogle Scholar
  112. Reis VM, Baldani JI, Baldani VLD, Döbereiner J (2000) Biological dinitrogen fixation in gramineae and palm tree. Crit Rev Pl Sc 19:227–247CrossRefGoogle Scholar
  113. Rocha FR, Papini-Terzi FS, Nishiyama MY, Vêncio RZN, Vicentini R, Duarte RDC, de Rosa JRVE, Vinagre F, Barsalobres C, Medeiros AH, Rodrigues FA, Ulian EC, Zingaretti SM, Galbiatti JA, Almeida RS, Figueira AVO, Hemerly AS, Silva-Filho MC, Menossi M, Souza GM (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 71:2164–2168Google Scholar
  114. Rombouts FM, Pilnik W (1972) Research on pectin depolymerases in the sixties-a literature review. Crit Rev Food Technol 3:1–26Google Scholar
  115. Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003a) Root colonization, systemic spreading and contribution of Herbaspirillum seropedicae to growth of rice seedlings. Symbiosis 35:01–10Google Scholar
  116. Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003b) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47PubMedCrossRefGoogle Scholar
  117. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interac 19:827–837CrossRefGoogle Scholar
  118. Rothballer M, Schmid M, Klein I, Gattinger A, Grundmann S, Hartmann A (2006) Herbaspirillum hiltneri sp. nov., isolated from surface-sterilized wheat roots. Int J Syst Evol Microbiol 56:1341–1348PubMedCrossRefGoogle Scholar
  119. Rothballer M, Eckert B, Schmid M, Fekete A, Schloter M, Lehner A, Pollmann S, Hartmann A (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 66:85–95PubMedCrossRefGoogle Scholar
  120. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedCrossRefGoogle Scholar
  121. Scala F, Zoina A (1983) Production of pectolytic and cellulolytic enzymes by Corynebacterium michiganense (E. F. Smith) Jensen. Ann Fac Sci Agrar Univ Studl Napoli Portici 17:68–76Google Scholar
  122. Schaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8(11):1867–1880CrossRefGoogle Scholar
  123. Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain specific monoclonal antibodies. Symbiosis 25:159–179Google Scholar
  124. Schmidt MA, Souza EM, Baura VA, Wassem R, Yates MG, Pedrosa FO, Monteiro RA (2011) Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz J Med Biol Res 44:182–185PubMedCrossRefGoogle Scholar
  125. Schuhegger R, Ihring A, Gantner S (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone producing rhizosphere bacteria. Plant Cell Environ 29:909–918PubMedCrossRefGoogle Scholar
  126. Schwab S, Ramos HJ, Souza EM, Chubatsu LS, Yates MG, Pedrosa FO, Rigo LU (2007) Identification of NH4 + -regulated genes of Herbaspirillum seropedicae by random insertional mutagenesis. Arch Microbiol 187:379–386PubMedCrossRefGoogle Scholar
  127. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmor ERW, Staskawicz BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Sci 274:2063–2065CrossRefGoogle Scholar
  128. Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E (2002) Advances in rhizobium research. Crit Ver Plant Sci 21:323–378CrossRefGoogle Scholar
  129. Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation os sterile plants with Acetobacter diazotrophicus wild-type and nif-mutant strains. Mol Plant-Microbe Interact 14:358–366PubMedCrossRefGoogle Scholar
  130. Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 113:1–13Google Scholar
  131. Shulz B, Boyle C (2005) What are endophytes? Soil Biol 9:1–13CrossRefGoogle Scholar
  132. Solheim B, Fjellheim KE (1984) Rhizobial polysaccharidedegrading enzymes from roots of legumes. Physiol Plant 62:11–17CrossRefGoogle Scholar
  133. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  134. Spilker T, Uluer AZ, Marty FM, Yeh WW, Levison JH, Vandamme P, Lipuma JJ (2008) Recovery of Herbaspirillum species from persons with cystic fibrosis. J Clin Microbiol 46:2774–2777PubMedCrossRefGoogle Scholar
  135. Sprent JI (2009) Legume nodulation: a global perspective. Wiley, OxfordGoogle Scholar
  136. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215PubMedCrossRefGoogle Scholar
  137. Stoltzfus JR, So R, Malarvizhi PP, Ladha JK, de Bujin FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potencial for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36CrossRefGoogle Scholar
  138. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit Rev Plant Sci 19:1–30CrossRefGoogle Scholar
  139. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136PubMedCrossRefGoogle Scholar
  140. Tadra-Sfeir MZ, Souza EM, Faoro H, Müller-Santos M, Baura VA, Tuleski TR, Rigo LU, Yates MG, Wassem R, Pedrosa FO, Monteiro RA (2011) Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae. Appl Environ Microbiol 77:2180–2183PubMedCrossRefGoogle Scholar
  141. Tan ZQ, Men R, Zhang RY, Huang Z (2010) First report of Herbaspirillum rubrisubalbicans causing mottled stripe disease on sugarcane in China. Am Phytopathol Soc 94:379.2–379.2Google Scholar
  142. Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Sci 274:2060–2062CrossRefGoogle Scholar
  143. Triplett EW (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38CrossRefGoogle Scholar
  144. Tsuge S, Nakayama T, Terashima S, Ochiai H, Furutani A, Oku T, Tsuno K, Kubo Y, Kaku H (2006) Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv. oryzae. J Bacteriol 188:4158–4162PubMedCrossRefGoogle Scholar
  145. Umali-Garcia M, Hubbell DH, Gashins MH, Dazzo FB (1980) Association of Azospirillum with grass roots. Appl Environ Microbiol 39:219–226PubMedGoogle Scholar
  146. Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56:105–114CrossRefGoogle Scholar
  147. Valverde A, Velázquez E, Gutiérrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983PubMedCrossRefGoogle Scholar
  148. Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286PubMedGoogle Scholar
  149. Vinagre F, Vargas C, Schwarcz K, Cavalcanti J, Nogueira EM, Baldani JI, Ferreira PCG, Hemerly AS (2006) SHR5: a novel plant receptor kinase involved in plant-N2-fixing endophytic bacteria association. J Exp Bot 57:559–569PubMedCrossRefGoogle Scholar
  150. Wang K, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131–151Google Scholar
  151. Warren RAJ (1996) Microbiol hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212PubMedCrossRefGoogle Scholar
  152. Weber OB, Cruz LM, Baldani JI, Döbereiner J (2001) Herbaspirillum-like bacteria in banana plants. Braz J Microbiol 32:201–205CrossRefGoogle Scholar
  153. Weber OB, Muniz CR, Vitor AO, Freire FCO, Oliveira VM (2007) Interaction of endophytic diazotrophic bactéria and Fusarum oxysporum f. sp. cubense on plantlets of banana ‘Maça’. Plant Soil 298:47–56CrossRefGoogle Scholar
  154. Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbial Biotec 2:428–440CrossRefGoogle Scholar
  155. Xiao Y, Hutcheson SW (1994) A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J Bacteriol 176:3089–3091PubMedGoogle Scholar
  156. Xu HX, Wu HY, Qiu YP, Shi XQ, He GH, Zhang JF, Wu JC (2011) Degradation of fluoranthene by a newly isolated strain of Herbaspirillum chlorophenolicum from activated sludge. Biodegradation 22:335–345PubMedCrossRefGoogle Scholar
  157. Yanni YG, Rizk RY, Corish V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Brujin FD, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic associations between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potencial of promote rice growth. Plant Soil 194:99–114CrossRefGoogle Scholar
  158. Zakria M, Njoloma J, Saeki Y, Akao S (2007) Colonization and nitrogen-fixing ability of Herbaspirillum sp. strain B501 gfp1 and assesment of its growth-promoting ability in cultivated rice. Microbes Environ 22:197–206CrossRefGoogle Scholar
  159. Ziga ED, Druley T, Burnham Carey-Ann D (2010) Herbaspirillum species bacteremia in a pediatric oncology patient. J Clin Microbiol 48:4320–4321PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Rose Adele Monteiro
    • 1
  • Eduardo Balsanelli
    • 1
  • Roseli Wassem
    • 2
  • Anelis M. Marin
    • 1
  • Liziane C. C. Brusamarello-Santos
    • 1
  • Maria Augusta Schmidt
    • 1
  • Michelle Z. Tadra-Sfeir
    • 1
  • Vânia C. S. Pankievicz
    • 1
  • Leonardo M. Cruz
    • 1
  • Leda S. Chubatsu
    • 1
  • Fabio O. Pedrosa
    • 1
  • Emanuel M. Souza
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Department of GeneticsUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations