Plant and Soil

, Volume 356, Issue 1–2, pp 245–264 | Cite as

Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.)

  • Adriana Ambrosini
  • Anelise Beneduzi
  • Thais Stefanski
  • Felipe G. Pinheiro
  • Luciano K. Vargas
  • Luciane M. P. Passaglia
Regular Article


Background and Aims

This study was aimed at assessing the diversity of putatively diazotrophic rhizobacteria associated with sunflower (Helianthus annuus L.) cropped in the south of Brazil, and to examine key plant growth promotion (PGP) characteristics of the isolates for the purposes of increasing plant productivity.


299 strains were isolated from the roots and rhizosphere of sunflower cultivated in five different areas using N-free media. 16S rDNA PCR-RFLP and 16S rRNA partial sequencing were used for identification and the Shannon index was used to evaluate bacterial diversity. Production of siderophores and indolic compounds (ICs), as well phosphate solubilization activities of each isolate were also evaluated in vitro. On the basis of multiple PGP activities, eight isolates were selected and tested for their N-fixation ability, and their capacity as potential PGPR on sunflower plants was also assessed.


All except three Gram-positive strains (phylum Actinobacteria) belonged to the Gram-negative Proteobacteria subgroups [Gamma (167), Beta (78), and Alpha (50)] and the family Flavobacteriaceae (1)]. Shannon indexes ranged from 0.96 to 2.13 between the five sampling sites. Enterobacter and Burkholderia were the predominant genera isolated from roots and rhizosphere, respectively. Producers of siderophores and ICs were widely found amongst the isolates, but only 19.8% of them solubilized phosphate. About 8% of the isolates exhibited all three PGP traits, and these mostly belonged to the genus Burkholderia. Four isolates were able to stimulate the growth of sunflower plants under gnotobiotic conditions.


Enterobacter and Burkholderia were the dominant rhizospheric bacterial genera associated with sunflower plants. Inoculation with isolates belonging to the genera Achromobacter, Chryseobacterium, Azospirillum, and Burkholderia had a stimulatory effect on plant growth.


Sunflower PGPR Diversity Burkholderia Enterobacter 



We thank to F. Bered, P. B. Costa and E. Sperb for their contribution to this work. We also thank R. L. M. Weber for his valuable scientific comments. This work was financed by a Grant and fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) and INCT da Fixação Biológica do Nitrogênio (Brazil).


  1. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. doi: 10.1007/s00248-009-9531-y PubMedCrossRefGoogle Scholar
  2. Ahmad F, Ahmad I, Khan MS (2006) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 2:173–181. doi: 10.1016/j.micres.2006.04.001 Google Scholar
  3. Ait Barka E, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant gowth promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252. doi: 10.1128/AEM.01047-06 PubMedCrossRefGoogle Scholar
  4. Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66(8):3393–3398. doi: 10.1128/AEM.66.8.3393-3398.2000 PubMedCrossRefGoogle Scholar
  5. Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  6. Amorim EP, Ramos NP, Ungaro MRG, Kiihl TAM (2008) Correlações e análises de trilha em girassol. Bragantia 67(2):307–316CrossRefGoogle Scholar
  7. Anandham R, Kwon SW, Gandhi PI, Kim SJ, Weon HY, Kim YS, As TM, Kim YK, Jee HJ (2010) Dyella thiooxydans sp. nov., a facultative chemolithotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil of sunflower (Helianthus annuus L.). Int J Syst Evol Microbiol 61:392–398. doi: 10.1099/ijs.0.022012-0 PubMedCrossRefGoogle Scholar
  8. Andrews M, James EK, Cummings SP, Zavalin AA, Vinogradova LV, McKenzie BA (2003) Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis 35:209–229Google Scholar
  9. Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38Google Scholar
  10. Araujo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PAV, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236. doi: doi:10.1139/cjm-47-3-229 PubMedCrossRefGoogle Scholar
  11. Asis CA, Adachi K (2003) Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweet potato stem in Japan. Lett Appl Microbiol 38:19–23. doi: 10.1046/j.1472-765X.2003.01434.x CrossRefGoogle Scholar
  12. Backes RL, Souza AM, Balbinot AA Jr, Gallotti GJM, Bavaresco A (2008) Desempenho de cultivares de girassol em duas épocas de plantio de safrinha no planalto norte catarinense. Scientia Agrária 9(1):41–48Google Scholar
  13. Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922. doi: 10.1016/S0038-0717(96)00218-0 CrossRefGoogle Scholar
  14. Barassi CA, Sueldo RJ, Creus CM, Carrozzi LE, Casanovas EM, Pereyra MA (2008) Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production. Dyn Soil Dyn Plan 1(2):68–82Google Scholar
  15. Barriuso J, Solano BR, Lucas JA, Lobo AP, García-Villaraco A, Mañero FJG (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–17Google Scholar
  16. Bashan Y, Puente ME, Rodriguez-Mendoza MN, Toledo G, Holguin G, Ferrera-Cerrato R, Pedrin S (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61:1938–1945PubMedGoogle Scholar
  17. Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50(8):521–577. doi: 10.1139/w04-035 PubMedCrossRefGoogle Scholar
  18. Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, ordrecht, pp 1–56. doi: 10.1007/978-1-4020-4538-7_1 CrossRefGoogle Scholar
  19. Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320. doi: 10.1016/j.apsoil.2008.01.006 CrossRefGoogle Scholar
  20. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi: 10.1111/j.1574-6941.2009.00654.x PubMedCrossRefGoogle Scholar
  21. Bergsma-Vlami M, Prins ME, Raaijmakers JM (2005) Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiol Ecol 52:59–69. doi: 10.1016/j.femsec.2004.10.007 PubMedCrossRefGoogle Scholar
  22. Bhattarai T, Hess D (1993) Yield responses of Nepalese spring wheat (Triticum aestivum L. ) cultivars to inoculation with Azospirillum spp. of Nepalese origin. Plant Soil 151:67–76. doi: 10.1007/BF00010787 CrossRefGoogle Scholar
  23. Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470. doi: 10.1111/j.1574-6941.2006.00082.x PubMedCrossRefGoogle Scholar
  24. Boddey RM (1987) Methods for quantification of nitrogen fixation associated with gramineae. Crit Rev Plant Sci 6:209–266CrossRefGoogle Scholar
  25. Borges LGD, Dalla Vechia V, Corçao G (2003) Characterization and genetic diversity via REP-PCR of Escherichia coli isolates from polluted waters in southern Brazil. FEMS Microbiol Ecol 45:173–180. doi: 10.1016/S0168-6496(03)00147-8 CrossRefGoogle Scholar
  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  27. Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75(10):4801–4805. doi: 10.1073/pnas.75.10.4801 PubMedCrossRefGoogle Scholar
  28. Buchan A, Crombie B, Alexandre GM (2010) Temporal dynamics and genetic diversity of chemotactic-competent microbial populations in the rhizosphere. Environ Microbiol 12(12):3171–3184. doi: 10.1111/j.1462-2920.2010.02290.x PubMedCrossRefGoogle Scholar
  29. Burris RH (1972) Nitrogen fixation assay methods and techniques. Meth Enzymol 24:415–431PubMedCrossRefGoogle Scholar
  30. Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73(16):5308–5319. doi: 10.1128/AEM.00324-07 PubMedCrossRefGoogle Scholar
  31. Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006. doi: 10.1111/j.1462-2920.2010.02277.x PubMedCrossRefGoogle Scholar
  32. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. doi: 10.1099/ijs.0.64915-0 PubMedCrossRefGoogle Scholar
  33. Ciccillo F, Fiore A, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (2002) Effect of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacteria diversity. Environ Microbiol 4:238–245. doi: 10.1046/j.1462-2920.2002.00291.x PubMedCrossRefGoogle Scholar
  34. Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794. doi: 10.1128/AEM.70.3.1787-1794.200 PubMedCrossRefGoogle Scholar
  35. Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49:469–479. doi: 10.1016/j.femsec.2004.04.010 PubMedCrossRefGoogle Scholar
  36. Dimpka C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stresses conditions. Plant Cell Environ 32:1682–1694. doi: 10.1111/j.1365-3040.2009.02028.x CrossRefGoogle Scholar
  37. Döbereiner J (1988) Isolation and identification of root associated diazotrophs. Plant Soil 110(2):207–212. doi: 10.1007/BF02226800 CrossRefGoogle Scholar
  38. Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141. doi: 10.1046/j.1462-2920.2000.00078.x PubMedCrossRefGoogle Scholar
  39. Fages J, Arsac F (1991) Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacteria. Plant Soil 137(1):87–90. doi: 10.1007/BF02187437 CrossRefGoogle Scholar
  40. Fages J, Lux B (1991) Identification of bacteria isolated from roots of sunflower (Helianthus annuus) cultivated in a French soil. Can J Microbiol 37(12):9711–9974. doi: 10.1139/m91-167 CrossRefGoogle Scholar
  41. Felske A, Rheims H, Wokerink A, Stackebrandt E, Akkermans DL (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grasslands soils. Microbiol 143:2983–2989. doi: 10.1099/00221287-143-9-2983 CrossRefGoogle Scholar
  42. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. PNAS 103:626–631. doi: 10.1073/pnas.0507535103 PubMedCrossRefGoogle Scholar
  43. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152. doi: 10.1007/s00253-007-1077-7 PubMedCrossRefGoogle Scholar
  44. Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61:485–493. doi: 10.1007/s00284-010-9642-1 PubMedCrossRefGoogle Scholar
  45. Gelsomino A, Keijzer-Wolters A, Cacco G, van Elsas JD (1999) Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Methods 38:1–15. doi: 10.1016/S0167-7012(99)00054-8 PubMedCrossRefGoogle Scholar
  46. Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fert Soils 33:410–415. doi: 10.1007/s003740100343 CrossRefGoogle Scholar
  47. Germida JJ, Siciliano SD, Freitas R, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50. doi: 10.1111/j.1574-6941.1998.tb01560.x CrossRefGoogle Scholar
  48. Gilbert GS, Parke JL, Clayton MK, Handelsman J (1993) Effects of an introduced bacterium on bacterial communities on roots. Ecology 74:840–854. doi: 10.2307/1940810 CrossRefGoogle Scholar
  49. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7. doi: 10.1016/j.femsle.2005.07.030 PubMedCrossRefGoogle Scholar
  50. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. CRC Crit Rev Plant Sci 26:227–242. doi: 10.1080/07352680701572966 CrossRefGoogle Scholar
  51. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski Reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796PubMedGoogle Scholar
  52. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412. doi: 10.1016/j.soilbio.2004.08.030 CrossRefGoogle Scholar
  53. Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378. doi: 10.1016/S0038-0717(97)00124-7 CrossRefGoogle Scholar
  54. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645. doi: 10.1128/JB.183.8.2634-2645.2001 PubMedCrossRefGoogle Scholar
  55. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microb 3:307–319. doi: 10.1038/nrmicro1129 CrossRefGoogle Scholar
  56. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  57. Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163(2):234–242. doi: 10.1016/j.micres.2006.05.009 PubMedCrossRefGoogle Scholar
  58. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis Version 2.09. Palaeont Electr 4(1):9Google Scholar
  59. Hebbar O, Berge T, Henlin S, Singh SP (1991) Bacterial antagonists of sunflower (Helianthus annuus L.) fungal pathogens. Plant Soil 133(1):131–140. doi: 10.1007/BF00011907 CrossRefGoogle Scholar
  60. Hinsinger P, Marschner P (2006) Rhizosphere – perspectives and challenges – a tribute to Lorenz Hiltner 12–17 September 2004 – Munich, Germany. Plant Soil 283:vii–viii. doi: 10.1007/s11104-006-0057-5 CrossRefGoogle Scholar
  61. Hinton DM, Bacon CW (1995) Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129:117–125. doi: 10.1007/BF01103471 PubMedCrossRefGoogle Scholar
  62. Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact 18:169–178. doi: 10.1094/MPMI-18-0169 PubMedCrossRefGoogle Scholar
  63. Jaillais Y, Chory J (2010) Unraveling the paradoxes of plant hormone signaling integration. Nat Struct Mol Biol 17:642–645. doi: 10.1038/nsmb0610-642 PubMedCrossRefGoogle Scholar
  64. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209. doi: 10.1016/S0378-4290(99)00087-8 CrossRefGoogle Scholar
  65. Kaiser O, Puhler A, Selbitschka W (2001) Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation dependent and cultivation-independent approaches. Microb Ecol 42:136–149. doi: 10.1007/s002480000121 PubMedGoogle Scholar
  66. Kamal J, Bano A (2008) Potential allelopathic effects of sunflower (Helianthus annuus L.) on microorganisms. Afr J Biotechnol 7(22):4208–4211Google Scholar
  67. Kaschuk G, Hungria M, Andrade DS, Campo RJ (2006) Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl Soil Ecol 32:210–220. doi: 10.1016/j.apsoil.2005.06.008 CrossRefGoogle Scholar
  68. Kloepper JW, McInroy JA, Bowen KL (1992) Comparative identification by fatty acid analysis of soil, rhizosphere, and geocarposphere bacteria of peanut (Arachis hypogaea L.). Plant Soil 139:85–90. doi: 10.1007/BF00012845 CrossRefGoogle Scholar
  69. Kong GA, Kochman JK, Brown JF (1997) Phylloplane bacteria antagonistic to the sunflower pathogen Alternaria helianthi. Australas Plant Pathol 26(2):85–97. doi: 10.1071/AP97014 CrossRefGoogle Scholar
  70. Kowalchuk GA, Buma DS, De Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species com-position and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520. doi: 10.1023/A:1020565523615 PubMedCrossRefGoogle Scholar
  71. Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251. doi: 10.1111/j.1462-2920.2004.00658.x PubMedCrossRefGoogle Scholar
  72. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:511–5120. doi: 10.1128/AEM.00335-09 CrossRefGoogle Scholar
  73. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606. doi: 10.1080/0735-260291044377 CrossRefGoogle Scholar
  74. Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 9(4):2372–2380. doi: 10.4238/vol9-4gmr921 PubMedCrossRefGoogle Scholar
  75. Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445. doi: 10.1016/S0038-0717(01)00052-9 CrossRefGoogle Scholar
  76. McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342. doi: 10.1007/BF00011472 CrossRefGoogle Scholar
  77. McLoughlin TJ, Quinn JP, Bettermann A, Booklandt R (1992) Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl Environ Microbiol 58(5):1760–1763PubMedGoogle Scholar
  78. Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20(12):1614–1623. doi: 10.4014/jmb.1005.05014 PubMedCrossRefGoogle Scholar
  79. Misko AL, Germida JJ (2002) Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiol Ecol 42:399–407. doi: 10.1016/S0168-6496(02)00355-0 PubMedCrossRefGoogle Scholar
  80. Mitchell RJ, Hester AJ, Campbell CD, Chapman SJ, Cameron CM, Hewison RL, Potts JM (2010) Is vegetation composition or soil chemistry the best predictor of the soil microbial community? Plant Soil 333:417–430. doi: 10.1007/s11104-010-0357-7 CrossRefGoogle Scholar
  81. Montesinos E, Bonaterra A, Badosa E, Francés J, Alemany J, Llorente I, Moragrega C (2002) Plant-microbe interactions and the new biotechnological methods of plant disease control. Int Microbiol 5:169–175. doi: 10.1007/s10123-002-0085-9 PubMedCrossRefGoogle Scholar
  82. Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2 fixing bacteria on micro propagated sugarcane plants. Plant Soil 242(2):205–215. doi: 10.1023/A:1016249704336 CrossRefGoogle Scholar
  83. Qihui H, Yanqin D, Binghai D, Fengli J, Xiaomeng L, Zhenxin S , Ruijun Z, Liangtong Y (2009) Screening and identification of antagonistic bacteria from sunflower rhizosphere and preliminary study on the antagonistic mechanism. Biotechnology Bulletin China. Accessed 25 March 2011
  84. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. doi: 10.1007/s11104-008-9568-6 CrossRefGoogle Scholar
  85. Reiter B, Bürgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49:549–555. doi: 10.1139/w03-070 PubMedCrossRefGoogle Scholar
  86. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi: 10.1007/s11104-009-9895-2 CrossRefGoogle Scholar
  87. Rico A, Ortiz-Barredo A, Ritter E, Murillo J (2004) Genetic characterization of Erwinia amylovora strains by amplified fragment length polymorphism. J Appl Microbiol 96:302–310. doi: 10.1046/j.1365-2672.2003.02156.x PubMedCrossRefGoogle Scholar
  88. Rijavec T, Lapanje A, Dermastia M, Rupnik M (2007) Isolation of bacterial endophytes from germinated maize kernels. Can J Microbiol 53:802–808. doi: 10.1139/W07-048 PubMedCrossRefGoogle Scholar
  89. Rio Grande do Sul Atlas Socioeconômico do Rio Grande do Sul (2005) available on
  90. Roberts DP, Dery PD, Yucel I, Buyer J, Holyman MA, Kobayashi DY (1999) Role of pfkA and general carbohydrate catabolism in seed colonization by Enterobacter cloacae. Appl Environ Microbiol 65(6):2513–2519PubMedGoogle Scholar
  91. Rohlf FJ (1990) NTSYS-pc numerical taxonomy and multivariate system version 2.01. Exeter Software. Setauket, New YorkGoogle Scholar
  92. Rosenblueth M, Martinez L, Silva J, Martinez-Romero E (2004) Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27:27–35. doi: 10.1078/0723-2020-00261 PubMedCrossRefGoogle Scholar
  93. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Ed. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  94. Sarwar M, Kremer RJ (1992) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285. doi: 10.1111/j.1472-765X.1995.tb00446.x CrossRefGoogle Scholar
  95. Schauer S, Kutschera U (2008) Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci 127:23–29. doi: 10.1007/s12064-007-0020-x PubMedCrossRefGoogle Scholar
  96. Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LK, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity–productivity pattern. Ecology 92(2):296–303. doi: 10.1890/10-0773.1 PubMedCrossRefGoogle Scholar
  97. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. doi: 10.1016/0003-2697(87)90612-9 PubMedCrossRefGoogle Scholar
  98. Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E (2002) Advances in Rhizobium Research. CRC Crit Rev Plant Sci 21(4):323–378. doi: 10.1080/0735-260291044278 CrossRefGoogle Scholar
  99. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192. doi: 10.1099/ijs.0.63149-0 PubMedCrossRefGoogle Scholar
  100. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  101. Shilev S, Fernández A, Benlloch M, Sancho ED (2006) Sunflower growth and tolerance to arsenic is increased by the rhizospheric bacteria Pseudomonas fluorescens. In: Morel JL et al (eds) Phytoremediation of Metal-Contaminated Soils. Springer, Netherlands, pp 315–326. doi: 10.1007/1-4020-4688-X_12 CrossRefGoogle Scholar
  102. Shilev S, Sancho ED, Benlloch-González M (2010) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manage in press. doi: 10.1016/j.jenvman.2010.07.019
  103. Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–276. doi: 10.1007/s00253-009-2233-z PubMedCrossRefGoogle Scholar
  104. Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol 12(8):386–393. doi: 10.1016/j.tim.2004.06.008 PubMedCrossRefGoogle Scholar
  105. Škorić D, Jocić S, Sakač Z, Lečić N (2008) Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can J Physiol Pharmacol 86(4):215–221. doi: 10.1139/Y08-008 PubMedCrossRefGoogle Scholar
  106. Smalla K, Wieland G, Buchner A, Zock A, Parzy J et al (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751. doi: 10.1128/AEM.67.10.4742-4751.2001 PubMedCrossRefGoogle Scholar
  107. Solano BR, Barriuso Maicas J, Pereyra de la Iglesia MT, Domenech J, Gutiérrez Mañero FJ (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Biological Control 98(4):451–457. doi: 10.1094/PHYTO-98-4-0451 Google Scholar
  108. SPSS (2010) Statistics Core system. SPSS Inc., ChicagoGoogle Scholar
  109. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho B, Mendonça-Previato L, James EK, Venturi V (2011) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol. doi: 10.1007/s00248-011-9929-1
  110. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424. doi: 10.1007/s00248-007-9287-1 PubMedCrossRefGoogle Scholar
  111. Sylvester-Bradley R, Asakawa N, La Torraca S, Magalhães FMM, Oliveira L, Pereira RM (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amazônica 12:15–22Google Scholar
  112. Teixeira MA, de Melo IS, Vieira RF, Costa FEC, Harakava R (2007) Cassava endophytic microorganisms of commercial plantings and ethnovarieties in three Brazilian states. Pesq Agropec Bras 42(1):43–49. doi: 10.1590/S0100-204X2007000100006 CrossRefGoogle Scholar
  113. Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89(1):136–150Google Scholar
  114. Tripathi AK, Nagarajan T, Verma SC, Rudulier DL (2002) Inhibition of biosynthesis and activity of nitrogenase in Azospirillum brasilense Sp7 under salinity stress. Current Microbiol 44:363–367. doi: 10.1007/s00284-001-0022-8 PubMedCrossRefGoogle Scholar
  115. van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. doi: 10.1007/s10658-007-9165-1 CrossRefGoogle Scholar
  116. Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429. doi: 10.1023/B:BILE.0000018263.94440.ab PubMedCrossRefGoogle Scholar
  117. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi: 10.1023/A:1026037216893 CrossRefGoogle Scholar
  118. Vial L, Groleau MC, Dekimpe V, Déziel E (2007) Burkholderia diversity and versatility: an inventory of the extracellular products. J Microbiol Biotechnol 17:1407–1429PubMedGoogle Scholar
  119. Wieland GW, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854. doi: 10.1128/AEM.67.12.5849-5854.2001 PubMedCrossRefGoogle Scholar
  120. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050. doi: 10.1890/02-0433 CrossRefGoogle Scholar
  121. Zeller SL, Brandl H, Schmid B (2007) Host-plant selectivity of rhizobacteria in a crop/weed model system. PLoS One 2(9):e846 1–7. doi: 10.1371/journal.pone.0000846 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Adriana Ambrosini
    • 1
  • Anelise Beneduzi
    • 1
  • Thais Stefanski
    • 1
  • Felipe G. Pinheiro
    • 1
  • Luciano K. Vargas
    • 2
  • Luciane M. P. Passaglia
    • 1
  1. 1.Departamento de Genética, Instituto de BiociênciasUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Fundação Estadual de Pesquisa Agropecuária (FEPAGRO)Porto AlegreBrazil

Personalised recommendations