Plant and Soil

, Volume 353, Issue 1–2, pp 333–353 | Cite as

Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region

  • César Pérez-Cruzado
  • Pablo Mansilla-Salinero
  • Roque Rodríguez-Soalleiro
  • Agustín Merino
Regular Article



This study examines the influence of tree species in relation to biomass and soil C dynamics in plantations established on former pasture land. Data on the C sink capacity of such plantations will provide valuable information for designing improved management strategies for afforestation programmes aimed at mitigating CO2 emissions.


The study was carried in the temperate forest of southern Europe, one of the most productive timber production systems in Europe. The study, designed to control most of the variability at regional level, involved a network of 120 paired plots (former pasture land-new plantations of different ages) established to construct three well-replicated chronosequences of the most common tree species in humid temperate systems.


The mean rates of C sequestration (biomass and soil) estimated throughout the rotation ranged between 8.7 and 14.6 Mg C ha−1 year−1 (Eucalyptus nitens>Eucalyptus globulus>Pinus radiata), and the contribution of the soil (forest floor plus mineral soil) ranged from 8 to 18% (Eucalyptus nitens>Pinus radiata>Eucalyptus globulus). The humid temperate climate and the sandy loam texture of the soils favoured large losses of SOC from the uppermost mineral soils during the 10 year after afforestation. The higher loss of SOC in the Pinus radiata soil (26% of initial SOC) than in the Eucalyptus soil (19.45% of initial SOC) was attributed to the lower transfer of organic C to the mineral soil, as a result of the lower litter decomposition rate and the lower belowground litter input from associated vegetation. The rapid development of tree biomass favoured the subsequent C sequestration in biomass and soils.


The C sink capacity of forest plantations can be maximized by elongating the rotation length and adopting suitable management strategies for each species. This is especially important in intensive forest plantations in which the high intensity of harvesting may prevent accumulation of SOC in the long term.


Eucalyptus Pinus radiata Pasture Afforestation Tree biomass Forest floor Soil organic matter 


  1. Alvarez E, Fernández Marcos ML, Torrado V, Fernández Sanjurjo MJ (2008) Dynamics of macronutrients during the first stages of litter decomposition from forest species in a temperate area (Galicia, NW Spain). Nutr Cycling Agroecosyst 80:243–256. doi:10.1007/s10705-007-9140-4 Google Scholar
  2. Andrade HJ, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308:11–22. doi:10.1007/s11104-008-9600-x Google Scholar
  3. Balboa-Murias MA, Rodríguez-Soalleiro R, Merino A, Álvarez-González JG (2006) Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. For Ecol Manage 237:29–38. doi:10.1016/j.foreco.2006.09.024 Google Scholar
  4. Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230. doi:10.1016/S0167-1987(99)00107-5 Google Scholar
  5. Bashkin MA, Binkley D (1998) Changes in soil carbon following afforestation in Hawaii. Ecology 79:828–833. doi:10.1890/0012-9658(1998)079[0828:CISCFA]2.0.CO%3B2 Google Scholar
  6. Bell MJ, Harch GR, Bridge BJ (1995) Effects of continuous cultivation on Ferrosols in subtropical southeast Queensland. I. Site characterization, crop yields and soil chemical status. Aust J Agric Res 46:237–253. doi:10.1071/AR9950237 Google Scholar
  7. Berg B, Johansson MB, Nilsson A, Gundersen P, Norell L (2009) Sequestration of carbon in the humus layer of Swedish forests—direct measurements. Can J For Res 39:962–975. doi:10.1139/X09-022 Google Scholar
  8. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manage 133:13–22. doi:10.1016/S0378-1127(99)00294-7 Google Scholar
  9. Berthrong ST, Jobbágy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–2241. doi:10.1890/08-1730.1 PubMedGoogle Scholar
  10. Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis, 2nd edn. ASA and SSAA, Madison, pp 363–375Google Scholar
  11. Brown S, Lugo AE (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and US Virgin Islands. Plant Soil 124:53–64. doi:10.1007/BF00010931 Google Scholar
  12. Carneiro M, Serrão V, Fabião A, Madeira M, Balsemão I, Hilário L (2009) Does harvest residue management influence biomass and nutrient accumulation in understory vegetation of Eucalyptus globulus Labill. plantations in a Mediterranean environment? For Ecol Manage 257:527–535. doi:10.1016/j.foreco.2008.09.027 Google Scholar
  13. Cerli C, Celi L, Kaiser K, Guggenberger G, Johansson MB, Cignetti A, Zanini E (2008) Changes in humic substances along an age sequence of Norway spruce stands planted on former agricultural land. Org Geochem 39:1269–1280. doi:10.1016/j.orggeochem.2008.06.001 Google Scholar
  14. Chefetz BS, Salloum MJ, Deshmukh AP, Hatcher PG (2002) Structural components of humic acids as determined by chemical modifications and carbon-13 NMR, pyrolysis-, and thermochemolysis-gas chromatography/mass spectrometry. Soil Sci Soc Am J 66:1159–1171. doi:10.2136/sssaj2002.1159 Google Scholar
  15. Conant RT, Smith GR, Paustian K (2003) Spatial variability of soil carbon in forested and cultivated sites: Implications for change detection. J Environ Qual 32:278–286. doi:10.2134/jeq2003.2780 PubMedGoogle Scholar
  16. Conteh A, Lefroy RDB, Blair GJ (1997) Dynamics of organic matter in soil as determined by variations in 13 C/12C isotopic ratios and fractionation by ease of oxidation. Aust J Soil Res 35:881–890. doi:10.1071/S96107 Google Scholar
  17. Corbeels M, O’Connell AM, McMurtrie RE, Grove TS, Mendham DS (2002) Modelling changes in nitrogen mineralisation following conversion of improved pasture to eucalypt plantation. Agronomie 22:801–815. doi:10.1051/agro:2002059 Google Scholar
  18. Corre MD, Schnabel RR, Shaffer JA (1999) Evaluation of soil organic carbon under forests, cool-season and warm-season grasses in the northeastern US. Soil Biol Biochem 31:1531–1539. doi:10.1016/S0038-0717(99)00074-7 Google Scholar
  19. Covington WW (1981) Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62:41–48. doi:10.2307/1936666 Google Scholar
  20. De Vries WIM, Reinds GJ, Gundersen PER, Sterba H (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biol 12:1151–1173. doi:10.1111/j.1365-2486.2006.01151.x Google Scholar
  21. Detwiler RP (1986) Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry 2:67–93. doi:10.1007/BF02186966 Google Scholar
  22. Diaz-Balteiro L, Bertomeu M, Bertomeu M (2009) Optimal harvest scheduling in Eucalyptus plantations: a case study in Galicia (Spain). Forest Policy Econ 11:548–554. doi:10.1016/j.forpol.2009.07.005 Google Scholar
  23. Don A, Rebmann C, Kolle O, Scherer-Lorenzen M, Schulze ED (2009) Impact of afforestation-associated management changes on the carbon balance of grassland. Global Change Biol 15:1990–2002. doi:10.1111/j.1365-2486.2009.01873.x Google Scholar
  24. EU (1992) COUNCIL REGULATION (EEC) Nº 2080/92 of 30 June 1992 Instituting a Comunity aid Scheme for Forestry Measures in AgricultureGoogle Scholar
  25. Fearnside PM, Barbosa RI (1998) Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. For Ecol Manage 108:147–166. doi:10.1016/S0378-1127(98)00222-9 Google Scholar
  26. Fernández-Núñez E, Rigueiro-Rodríguez A, Mosquera-Losada MR (2010) Carbon allocation dynamics one decade after afforestation with Pinus radiata D. Don and Betula alba L. under two stand densities in NW Spain. Ecol Eng 35:876–890. doi:10.1016/j.ecoleng.2010.03.007 Google Scholar
  27. Giddens KM, Parfitt RL, Percival HJ (1997) Comparison of some soil properties under Pinus radiata and improved pasture. N Z J Agric Res 40:409–416. doi:10.1080/00288233.1997.9513262 Google Scholar
  28. Glaser B, Turrion MB, Solomon D, Ni A, Zech W (2000) Soil organic matter quantity and quality in mountain soils of the Alay Range, Kyrgyzia, affected by land use change. Biol Fertility Soils 31:407–413. doi:10.1007/s003749900187 Google Scholar
  29. Goidts E, Van Wesemael B, Crucifix M (2009) Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. Eur J Soil Sci 60:723–739. doi:10.1111/j.1365-2389.2009.01157.x Google Scholar
  30. Golchin A, Oades JM, Skjemstad JO, Clarke P (1994) Soil structure and carbon cycling. Aust J Soil Res 32:1043–1068. doi:10.1071/SR9941043 Google Scholar
  31. González-Hernández MP, Silva-Pando FJ, Jiménez MC (1998) Production patterns of understory layers in several Galician (NW Spain) woodlands: Seasonality, net productivity and renewal rates. For Ecol Manage 109:251–259. doi:10.1016/S0378-1127(98)00253-9 Google Scholar
  32. Guggenberger G, Zech W (1999) Soil organic matter composition under primary forest, pasture, and secondary forest succession, Region Huetar Norte, Costa Rica. For Ecol Manage 124:93–104. doi:10.1016/S0378-1127(99)00055-9 Google Scholar
  33. Guo LB, Wang M, Gifford RM (2007) The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant Soil 299:251–262. doi:10.1007/s11104-007-9381-7 Google Scholar
  34. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biol 8:345–360. doi:10.1046/j.1354-1013.2002.00486.x Google Scholar
  35. Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007) Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems 10:999–1018. doi:10.1007/s10021-007-9073-4 Google Scholar
  36. Hooker TD, Compton JE (2003) Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol Appl 13:299–313. doi:10.1890/1051-0761(2003)013[0299:FECANA]2.0.CO%3B2 Google Scholar
  37. Huang Z, Davis MR, Condron LM, Clinton PW (2011a) Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biol Biochem 43:1341–1349. doi:10.1016/j.soilbio.2011.03.008 Google Scholar
  38. Huang Z, Clinton PW, Davis MR (2011b) Post-harvest residue management effects on recalcitrant carbon pools and plant biomarkers within the soil heavy fraction in Pinus radiata plantations. Soil Biol Biochem 43:404–412. doi:10.1016/j.soilbio.2010.11.008 Google Scholar
  39. Huggett RJ (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32:155–172. doi:10.1016/S0341-8162(98)00053-8 Google Scholar
  40. IPPC (2007) Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri RK, Reisinger A (Eds). United Nations Office, Geneva, SwitzerlandGoogle Scholar
  41. IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, RomeGoogle Scholar
  42. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. doi:10.1007/BF00333714 Google Scholar
  43. Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626. doi:10.1038/nature00910 PubMedGoogle Scholar
  44. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. doi:10.1016/j.geoderma.2006.09.003 Google Scholar
  45. Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO%3B2 Google Scholar
  46. Johnston MH, Homann PS, Engstrom JK, Grigal DF (1996) Changes in ecosystem carbon storage over 40 years on an old-field/forest landscape in east-central Minnesota. For Ecol Manage 83:17–26. doi:10.1016/0378-1127(96)03704-8 Google Scholar
  47. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. doi:10.1007/s11104-009-9925-0 Google Scholar
  48. Jug A, Makeschin F, Rehfuess KE, Hofmann-Schielle C (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. For Ecol Manage 121:85–99. doi:10.1016/S0378-1127(98)00558-1 Google Scholar
  49. Kanerva S, Smolander A (2007) Microbial activities in forest floor layers under silver birch, Norway spruce and Scots pine. Soil Biol Biochem 39:1459–1467. doi:10.1016/j.soilbio.2007.01.002 Google Scholar
  50. Kasel S, Singh S, Sanders GJ, Bennett LT (2011) Species-specific effects of native trees on soil organic carbon in biodiverse plantings across north-central Victoria, Australia. Geoderma 161:95–106. doi:10.1016/j.geoderma.2010.12.014 Google Scholar
  51. Kirschbaum MUF, Guo LB, Gifford RM (2008) Why does rainfall affect the trend in soil carbon after converting pastures to forests? A possible explanation based on nitrogen dynamics. For Ecol Manage 255:2990–3000. doi:10.1016/j.foreco.2008.02.005 Google Scholar
  52. Laganière J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta–analysis. Global Change Biol 16:439–453. doi:10.1111/j.1365-2486.2009.01930.x Google Scholar
  53. Laungani R, Knops JMH (2009) The impact of co–occurring tree and grassland species on carbon sequestration and potential biofuel production. GCB Bioenergy 1:392–403. doi:10.1111/j.1757-1707.2009.01031.x Google Scholar
  54. Leirós MC, Trasar-Cepeda C, Seoane S, Gil-Sotres F (2000) Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate-humid zone (Galicia, NW Spain): general parameters. Soil Biol Biochem 32:733–745. doi:10.1016/S0038-0717(99)00195-9 Google Scholar
  55. Lemma B, Nilsson I, Kleja DB, Olsson M, Knicker H (2007) Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biol Biochem 39:2317–2328. doi:10.1016/j.soilbio.2007.03.032 Google Scholar
  56. Lemma B, Kleja DB, Nilsson I, Olsson M (2006) Soil carbon sequestration under different exotic tree species in the southwestern highlands of Ethiopia. Geoderma 136:886–898. doi:10.1016/j.geoderma.2006.06.008 Google Scholar
  57. Liski J, Perruchoud D, Karjalainen T (2002) Increasing carbon stocks in the forest soils of western Europe. For Ecol Manage 169:159–175. doi:10.1016/S0378-1127(02)00306-7 Google Scholar
  58. Lugo AE, Brown S (1993) Management of tropical soils as sinks or sources of atmospheric carbon. Plant Soil 149:27–41. doi:10.1007/BF00010760 Google Scholar
  59. Maillard ÉP, Munson D, Alison D (2010) Soil carbon stocks and carbon stability in a twenty-year-old temperate plantation. Soil Sci Soc Am J 74:1775–1785. doi:10.2136/sssaj2009.0273 Google Scholar
  60. MAPA (2006) Forestación de Tierras Agrícolas: Análisis de su evolución y contribución a la fijación de carbono y al uso racional de la tierra. Spanish Ministry of Agriculture, Fisheries and Food, MadridGoogle Scholar
  61. Marín-Spiotta E, Silver WL, Swanston CW, Ostertag R (2009) Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Global Change Biol 15:1584–1597. doi:10.1111/j.1365-2486.2008.01805.x Google Scholar
  62. Martius C, Höfer H, Garcia MVB, Römbke J, Förster B, Hanagarth W (2004a) Microclimate in agroforestry systems in central Amazonia: does canopy closure matter to soil organisms? Agrofor Syst 60:291–304. doi:10.1023/B:AGFO.0000024419.20709.6c Google Scholar
  63. Martius C, Höfer H, Garcia MVB, Römbke J, Hanagarth W (2004b) Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr Cycling Agroecosyst 68:137–154. doi:10.1023/B:FRES.0000017468.76807.50 Google Scholar
  64. McGroddy ME, Daufresne T, Hedin L (2004) Sacling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85:2390–2401. doi:10.1890/03-0351 Google Scholar
  65. Mendham DS, O’Connell AM, Grove TS (2003) Change in soil carbon after land clearing or afforestation in highly weathered lateritic and sandy soils of south-western Australia. Agric Ecosyst Environ 95:143–156. doi:10.1016/S0167-8809(02)00105-6 Google Scholar
  66. Merino A, Balboa MA, Rodríguez-Soalleiro R, González JG (2005) Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. For Ecol Manage 207:325–339. doi:10.1016/j.foreco.2004.10.074 Google Scholar
  67. Merino A, Fernández-López A, Solla-Gullón F, Edeso JM (2004) Soil changes and tree growth in intensively managed Pinus radiata in northern Spain. For Ecol Manage 196:393–404. doi:10.1016/j.foreco.2004.04.002 Google Scholar
  68. MMAMRM (2010) Inventario de gases de efecto invernadero de España. Sumario de resultados. Ministerio de Medio Abiente, Medio Rural y Marino. Secretaría de Estado de Cambio Climático, Madrid (Spain)Google Scholar
  69. Morris SJ, Bohm S, Haile–Mariam S, Paul EA (2007) Evaluation of carbon accrual in afforested agricultural soils. Global Change Biol 13:1145–1156. doi:10.1111/j.1365-2486.2007.01359.x Google Scholar
  70. Murty D, Kirschbaum MUF, Mcmurtrie RE, Mcgilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biol 8:105–123. doi:10.1046/j.1354-1013.2001.00459.x Google Scholar
  71. Neill C, Melillo JM, Steudler PA, Cerri CC, de Moraes JFL, Piccolo MC, Brito M (1997) Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol Appl 7:1216–1225. doi:10.1890/1051-0761(1997)007[1216:SCANSF]2.0.CO%3B2 Google Scholar
  72. Nilsson S, Schopfhauser W (1995) The carbon-sequestration potential of a global afforestation program. Clim Change 30:267–293. doi:10.1007/BF01091928 Google Scholar
  73. Omil B, Mosquera-Losada R, Merino A (2007) Responses of a non N-limited forest plantation to the application of alkaline-stabilized dewatered dairy factory sludge. J Environ Qual 36:1765–1774. doi:10.2134/jeq2007.0057 PubMedGoogle Scholar
  74. Ostertag R, Marín-Spiotta E, Silver WL, Schulten J (2008) Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 11:701–714. doi:10.1007/s10021-008-9152-1 Google Scholar
  75. Otto A, Simpson MJ (2006) Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Org Geochem 37:385–407. doi:10.1016/j.orggeochem.2005.12.011 Google Scholar
  76. Paul KI, Polglase PJ (2004) Prediction of decomposition of litter under eucalypts and pines using the FullCAM model. For Ecol Manage 191:73–92. doi:10.1016/j.foreco.2003.11.007 Google Scholar
  77. Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manage 168:241–257. doi:10.1016/S0378-1127(01)00740-X Google Scholar
  78. Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147–163. doi:10.1023/A:1006271331703 Google Scholar
  79. Pérez-Cruzado C, Rodríguez Soalleiro R (2011) Improvement in accuracy of aboveground biomass estimation in Eucalyptus nitens plantations: effect of bole sampling intensity and explanatory variables. For Ecol Manage 261:2016–2028. doi:10.1016/j.foreco.2011.02.028 Google Scholar
  80. Pérez-Cruzado C, Merino A, Rodríguez-Soalleiro R (2011) A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain. Biomass Bioenerg:(in press). doi: 10.1016/j.biombioe.2011.03.020
  81. Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land–use change in the temperate zone–carbon response functions as a model approach. Global Change Biol in press. doi: 10.1111/j.1365-2486.2011.02408.x
  82. Post WM, Kwon KC (2000) Soil carbon sequestration and land–use change: processes and potential. Global Change Biol 6:317–327. doi:10.1046/j.1365-2486.2000.00308.x Google Scholar
  83. Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:1–17. doi:10.1007/s10533-010-9439-0 Google Scholar
  84. Reiners WA, Bouwman AF, Parsons WFJ, Keller M (1994) Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol Appl 4:363–377. doi:10.2307/1941940 Google Scholar
  85. Rhoades CC, Eckert GE, Coleman DC (2000) Soil carbon differences among forest, agriculture, and secondary vegetation in lower montane Ecuador. Ecol Appl 10:497–505. doi:10.1890/1051-0761(2000)010[0497:SCDAFA]2.0.CO%3B2 Google Scholar
  86. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–301. doi:10.1093/jxb/10.2.290 Google Scholar
  87. Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56–58. doi:10.1038/21867 Google Scholar
  88. Ross DJ, Tate KR, Scott NA, Feltham CW (1999) Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biol Biochem 31:803–813. doi:10.1016/S0038-0717(98)00180-1 Google Scholar
  89. SAS Institute Inc (2004) SAS/STAT 9.1 User’s Guide, Cary, NCGoogle Scholar
  90. Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biol 1:77–91. doi:10.1111/j.1365-2486.1995.tb00008.x Google Scholar
  91. Schlesinger WH (1986) Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR, Reichle DE (eds) The changing carbon cycle: A global analysis. Springer, New York, pp 194–220Google Scholar
  92. Silva-Pando FJ, González-Hernández MP, Rozados-Lorenzo MJ (2002) Pasture production in a silvopastoral system in relation with microclimate variables in the Atlantic coast of Spain. Agrofor Syst 56:203–211. doi:10.1023/A:1021359817311 Google Scholar
  93. Silver WL, Kueppers LM, Lugo AE, Ostertag R, Matzek V (2004) Carbon sequestration and plant community dynamics following reforestation of tropical pasture. Ecol Appl 14:1115–1127. doi:10.1890/03-5123 Google Scholar
  94. Smethurst PJ, Sadanandan Nambiar EK (1995) Changes in soil carbon and nitrogen during the establishment of a second crop of Pinus radiata. For Ecol Manage 73:145–155. doi:10.1016/0378-1127(94)03491-E Google Scholar
  95. Smith TM, Cramer WP, Dixon RK, Leemans R, Neilson RP, Solomon AM (1993) The global terrestrial carbon cycle. Wat Air Soil Pollut 70:19–37. doi:10.1007/BF01104986 Google Scholar
  96. Stanturf JA, Madsen P (2002) Restoration concepts for temperate and boreal forests of North America and Western Europe. Plant Biosyst 136:143–158. doi:10.1080/11263500212331351049 Google Scholar
  97. Stendahl J, Johansson MB, Eriksson E, Nilsson Å, Langvall O (2010) Soil organic carbon in Swedish spruce and pine forests—Differences in stock levels and regional patterns. Silva Fenn 44:5–21Google Scholar
  98. Thuille A, Schulze ED (2006) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biol 12:325–342. doi:10.1111/j.1365-2486.2005.01078.x Google Scholar
  99. Toriyama J, Kato T, Siregar CA, Siringoringo HH, Ohta S, Kiyono Y (2011) Comparison of depth- and mass-based approaches for estimating changes in forest soil carbon stocks: A case study in young plantations and secondary forests in West Java, Indonesia. For Ecol Manage 262:1659–1667. doi:10.1016/j.foreco.2011.07.027 Google Scholar
  100. Trumbore SE, Davidson EA, de Camargo PB, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of Eastern Amazonia. Global Biogeochem Cycles 9:515–528. doi:10.1029/95GB02148 Google Scholar
  101. Turner J, Lambert M (2000) Change in organic carbon in forest plantation soils in eastern Australia. For Ecol Manage 133:231–247. doi:10.1016/S0378-1127(99)00236-4 Google Scholar
  102. UNFCCC (2002) Views from parties on issues related to modalities for the inclussion of afforestation and reforestation project activities under the Clean Develompment Mechanism in the first commitment period. Submissions for parties. United Nations Framework Convention on Climate Change, United Nations Office, GenevaGoogle Scholar
  103. Ussiri D, Lal P, Jacinthe PA (2006) Soil properties and carbon sequestration of afforested pastures in reclaimed minesoils of Ohio. Soil Sci Soc Am J 70:1797–1806. doi:10.2136/sssaj2005.0352 Google Scholar
  104. Veldkamp E (1994) Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci Soc Am J 58:175–180. doi:10.2136/sssaj1994.03615995005800010025x Google Scholar
  105. Vesterdal L, Ritter E, Gundersen P (2002) Change in soil organic carbon following afforestation of former arable land. For Ecol Manage 169:137–147. doi:10.1016/S0378-1127(02)00304-3 Google Scholar
  106. Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manage 255:35–48. doi:10.1016/j.foreco.2007.08.015 Google Scholar
  107. Vitorello VA, Cerri CC, Andreux F, Feller C, Victoria RL (1989) Organic matter and natural carbon-13 distribution in forested and cultivated oxisols. Soil Sci Soc Am J 53:773–778. doi:10.2136/sssaj1989.03615995005300030024x Google Scholar
  108. von Lützow M, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445. doi:10.1111/j.1365-2389.2006.00809.x Google Scholar
  109. Walker SM, Desanker PV (2004) The impact of land use on soil carbon in Miombo Woodlands of Malawi. For Ecol Manage 203:345–360. doi:10.1016/j.foreco.2004.08.004 Google Scholar
  110. Woodbury PB, Heath LS, Smith JE (2006) Land use change effects on forest carbon cycling throughout the southern United States. J Environ Qual 35:1348–1363. doi:10.2134/jeq2005.0148 PubMedGoogle Scholar
  111. Zak DR, Grigal DF, Gleeson S, Tilman D (1990) Carbon and nitrogen cycling during old-field succession: constraints on plant and microbial biomass. Biogeochemistry 11:111–129. doi:10.1007/BF00002062 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • César Pérez-Cruzado
    • 1
    • 2
  • Pablo Mansilla-Salinero
    • 1
  • Roque Rodríguez-Soalleiro
    • 1
    • 2
  • Agustín Merino
    • 1
    • 3
  1. 1.Unit of Sustainable Forest ManagementUniversity of Santiago de CompostelaLugoSpain
  2. 2.Crop Production DepartmentUniversity of Santiago de CompostelaLugoSpain
  3. 3.Soil Science and Agricultural Chemistry DepartmentUniversity of Santiago de CompostelaLugoSpain

Personalised recommendations