Plant and Soil

, Volume 356, Issue 1–2, pp 35–49 | Cite as

The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community

  • Cecilia Taulé
  • Cintia Mareque
  • Claudia Barlocco
  • Fernando Hackembruch
  • Veronica M. Reis
  • Margarita Sicardi
  • Federico Battistoni
Regular Article


Background and aims

Rhizospheric, epiphytic and endophytic bacteria are associated with several non-legumes, colonizing their surface and inner tissues. Many of these bacteria are beneficial to their hosts, and are collectively termed plant growth-promoting rhizobacteria (PGPR). Recent interest has focused particularly upon PGPR that are endophytic (i.e. PGPE), and which have been reported to be associated with important crops such as rice, wheat and sugarcane. Different mechanisms are involved in bacteria-induced plant growth promotion (PGP), including biological nitrogen fixation (BNF), mineral solubilization, production of phytohormones and pathogen biocontrol. In Uruguay, sugarcane (Saccharum officinarum L.) is considered a strategic multipurpose crop, used for bioenergy, feed, sugar and bioethanol production. The aim of this work was to estimate the BNF contribution to Uruguayan sugarcane cultivars, as well as to identify and characterize the (culturable) putatively endophytic diazotrophic bacteria associated with these varieties.

Methods and results

Results using the 15N-dilution technique have shown that these sugarcane varieties obtain significant inputs of N from BNF (34.8–58.8% Ndfa). In parallel, a collection of 598 isolates of potentially endophytic diazotrophs was obtained from surface-sterilized stems using standard isolation techniques, and nifH + isolates from these were the subject of further studies. The bacteria were shown to belong to several genera, including Pseudomonas, Stenotrophomonas, Xanthomonas, Acinetobacter, Rhanella, Enterobacter, Pantoea, Shinella, Agrobacterium and Achromobacter. Additionally, some PGP features were studied in 35 selected isolates. The data obtained in this study represent the initial steps in a program aimed at determining the mechanisms of PGP of non-legume crops in Uruguay (such as sugarcane) with potentially beneficial plant-associated bacteria.


Saccharum officinarum Endophytes Diazotrophs PGPR 15N-isotope dilution 



Biological nitrogen fixation


indole-3-acetic acid


plant growth promoting endophytes

%15N a.e

atom %15N excess 15N

% Ndfa

percent nitrogen derived from air



This work was supported by grants from the Uruguayan Fund for the Promotion of Agricultural Technologies (Fondo de Promoción de Tecnología Agropecuaria FPTA-275-INIA), the Uruguayan Program for the Development of Basic Sciences (Programa de Desarrollo de las Ciencias Básicas -PEDECIBA), and the Uruguayan National Agency for Innovation and Research (Agencia Nacional de Innovación e Investigación, ANII). The authors are very grateful to the Department of Water and Soil (School of Agronomy, University of the Republic, Uruguay) and with Dr. Atilio Deana for his assistance with manuscript corrections.

Supplementary material

11104_2011_1023_MOESM1_ESM.doc (144 kb)
Table S1 16S rRNA nucleotide sequence similarities of putatively endophytic bacterial isolates from three Uruguayan commercial sugarcane cultivars (DOC 144 kb)


  1. Andrews M, James EK, Cummings SP, Zavalin AA, Vinogradova LV, McKenzie BA (2003) Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis 35:209–229Google Scholar
  2. Araújo WL, Maccheroni W, Aguilar-Vildoso C, Barroso PAV, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236PubMedCrossRefGoogle Scholar
  3. Asis CA Jr, Kubota M, Ohta H, Arima Y, Ohwaki Y, Yoneyama T, Tsuchiya K, Hayashi N, Nakanishi Y, Akao S (2002) Estimation of the nitrogen fixation by sugarcane cultivars NiF-8 using 15N dilution and natural 15N abundance techniques. Soil Sci Plant Nutr 48:283–285CrossRefGoogle Scholar
  4. Baldani VLD, Baldani JI, Olivares FL, Dobereiner J (1992) Identification and ecology of Herbaspirillum seropedicae and closely related Pseudomonas rubrisubalbicans. Symbiosis 13:65–73Google Scholar
  5. Bastián F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Reg 24:7–11CrossRefGoogle Scholar
  6. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotech 84:11–18CrossRefGoogle Scholar
  7. Berge O, Heulin T, Achouak W (1991) Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can J Microbiol 37:195–203CrossRefGoogle Scholar
  8. Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198PubMedGoogle Scholar
  9. Biggs IM, Stewart GR, Wilson JR, Critchley C (2002) 15N natural abundance studies in Australian commercial sugarcane. Plant Soil 23:21–30CrossRefGoogle Scholar
  10. Boddey RM (1995) Biological nitrogen fixation in sugar cane: a key to energetically viable biofuel production. Crit Rev Plant Sci 14:263–279Google Scholar
  11. Boddey RM, Victoria RL (1986) Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using 15N labelled organic matter and fertilizer. Plant Soil 90:265–292CrossRefGoogle Scholar
  12. Boddey RM, Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209CrossRefGoogle Scholar
  13. Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Aust J Plant Physiol 28:889–895Google Scholar
  14. Calvo J, Calvente V, Edith de Orellano ME, Benuzzi D, Sanz de Tosetti MI (2007) Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int J Food Microbiol 113:251–257PubMedCrossRefGoogle Scholar
  15. Cummings SP, Gyaneshwar P, Vinuesa P, Farruggia FT, Andrews M, Humphry D, Elliott GN, Nelson A, Orr C, Pettitt D, Shah GR, Santos SR, Krishnan HB, Odee D, Moreira FMS, Sprent JI, Young JPW, James EK (2009) Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ Microbiol 11:2510–2525PubMedCrossRefGoogle Scholar
  16. Danso SKA (1988) The use of 1 N enriched fertilizer for estimating nitrogen fixation in grain and pasture legumes. In: Beck DP, Materon LA (eds) Nitrogen fixation by legumes in Mediterranean agriculture. Martinus Niphoff, Dordrecht, pp 345–358CrossRefGoogle Scholar
  17. De Santis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno MY, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:394–399CrossRefGoogle Scholar
  18. Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, James TS (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33CrossRefGoogle Scholar
  19. Estrada-De Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798PubMedCrossRefGoogle Scholar
  20. Fischer D, Pfitzner B, Schmid M, Simões-Araújo JL, Reis VM, Pereira W, Ormeño-Orrillo E, Hai B, Hofmann A, Schloter M, Martinez-Romero E, Baldani JI, Hartmann A (2011) Molecular characterization of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil (in press doi: 10.1007/s11104-011-0812-0)
  21. Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300CrossRefGoogle Scholar
  22. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645PubMedCrossRefGoogle Scholar
  23. Gyaneshwar P, James EK, Reddy PM, Ladha J (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium tolerant rice varieties. New Phytol 154:131–146CrossRefGoogle Scholar
  24. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  25. Hardy RW, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207PubMedCrossRefGoogle Scholar
  26. Hoefsloot G, Termorshuizen AJ, Watt DA, Cramer MD (2005) Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown South African sugarcane cultivar. Plant Soil 277:85–96CrossRefGoogle Scholar
  27. Hulton CJS, Higgins CF, Sharp PM (1991) Eric sequences: a novel family of repetitive elements in the genomes of Echerichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834PubMedCrossRefGoogle Scholar
  28. Idris A, Labuschagne N, Korsten L (2009) Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. J Agric Sci 147:17–30CrossRefGoogle Scholar
  29. InfoStat (2008) InfoStat versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Cordóba, ArgentinaGoogle Scholar
  30. Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085PubMedCrossRefGoogle Scholar
  31. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209CrossRefGoogle Scholar
  32. James EK, Olivares F (1998) Infection and colonization of sugarcane and other graminaceous plants by endophytic bacteria. Crit Rev Plant Sci 17:77–119CrossRefGoogle Scholar
  33. James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766CrossRefGoogle Scholar
  34. James EK, Olivares FL, de Oliveira ALM, dos Reis Jr FB, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760PubMedGoogle Scholar
  35. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906PubMedCrossRefGoogle Scholar
  36. Kanvinde L, Sastry GR (1990) Agrobacterium tumefaciens is a diazotrophic bacterium. Appl Environ Microbiol 56:2087–2092PubMedGoogle Scholar
  37. Kuklinsky-Sobral J, Welington LA, Mendez R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251PubMedCrossRefGoogle Scholar
  38. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  39. Lee CW, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Müller J, Hedrich R, Deeken R (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948–2962PubMedCrossRefGoogle Scholar
  40. Lima E, Boddey RM, Dobereiner J (1987) Quantification of biological nitrogen fixation associated with sugarcane using a 15N aided nitrogen balance. Soil Biol Biochem 19:165–170CrossRefGoogle Scholar
  41. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413PubMedCrossRefGoogle Scholar
  42. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  43. Lynch D, O’Brien J, Welch T, Clarke P, Ó Cuiv P, Crosa J, O’Connell M (2001) Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol 183:2576–2585PubMedCrossRefGoogle Scholar
  44. Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Gen Mol Res 9:250–258CrossRefGoogle Scholar
  45. Mendez R, Pizzirani-kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex Isolates. Appl Environ Microbiol 73:7259–7267CrossRefGoogle Scholar
  46. Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normad P, Malik K (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54CrossRefGoogle Scholar
  47. Montañez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2009) Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs. Biol Fert Soils 45:253–263CrossRefGoogle Scholar
  48. Okon Y (2005) PGPR-technology cases of application and futureprospects. In: Hartmann A, Schmid M, Wenzel W, Hisinger, Ph (eds) Rhizosphere 2004 – Perspectives and Challenges. A Tribute to Lorenz Hiltner. GSF, Neuherberg, pp. 273–274Google Scholar
  49. Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215CrossRefGoogle Scholar
  50. Oliveira ALM, Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32CrossRefGoogle Scholar
  51. Oliveira M, Stoffels M, Schmid M, Reis VM, Baldani JI, Hartmann A (2009) Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106–113CrossRefGoogle Scholar
  52. Olson JB, Steppe TF, Litaker RW, Paerl HW (1998) N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antartica. Microbiol Ecol 36:231–238CrossRefGoogle Scholar
  53. Pedrosa FO, Yates MG (1984) Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntr (gln) type gene products. FEMS Microbiol Lett 23:95–101CrossRefGoogle Scholar
  54. Perin L, Martínez-Aguilar L, Castro-González R, Estrada-De los Santos P, Cabellos-Avelar T, Guedes HV, Reis VM, Caballero-Mellado J (2006) Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl Environ Microbiol 72:3103–3110PubMedCrossRefGoogle Scholar
  55. Ramos PL, Van Trappen S, Thompson F, Rocha RCS, Barbosa HR, De Vos P, Moreira-Filho CA (2010) Screening for endophytic nitrogen-fixing bacteria in Brazilian sugarcane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. Int J Syst Evol Microbiol 61:926–931PubMedCrossRefGoogle Scholar
  56. Reis VM, Olivares FL, Dobereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotech 10:101–104Google Scholar
  57. Reis VM, Lee S, Kennedy C (2007) Biological nitrogen fixation in sugarcane. In: Elmerich C, Newton WF (eds) Associative and endophytic nitrogen-fixing bacteria. Kluwer, Dordrecht, pp 213–232Google Scholar
  58. Reis-Junior F, Reis V, Silva L, Döbereiner J (2000) Levantamento e quantificaçao de bactérias diazotróficas em diferentes genotipos de cana-de-açúcar (Saccharum spp.). Pesq Agro Bras 35:985–994CrossRefGoogle Scholar
  59. Reinhold-Hurek B, Hurek T (1998). Interactions of graminaceousplants with Azoarcus spp. and other diazotrophs: identification,localization, and perspectives to study their function. Crit Rev PlantSci 17:29–54Google Scholar
  60. Rivas R, Velázquez E, Valverde A, Mateos PF, Martínez-Molina E (2001) A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22:1086–1089PubMedCrossRefGoogle Scholar
  61. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339CrossRefGoogle Scholar
  62. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837PubMedCrossRefGoogle Scholar
  63. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedCrossRefGoogle Scholar
  64. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  65. Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285CrossRefGoogle Scholar
  66. Schwyn B, Neilands JB (1987) Universal chemical assay for detection and determination of siderophores. Anal Biochem 160:47–56PubMedCrossRefGoogle Scholar
  67. Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif- mutant strains. Mol Plant Microbe Interact 14:358–366PubMedCrossRefGoogle Scholar
  68. Shokri D, Emtiazi G (2010) Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr Microbiol 61:217–225PubMedCrossRefGoogle Scholar
  69. Soltis PS, Soltis DE (2003) Applying the bootstrap in phylogeny reconstruction. Stat Sci 18:256–267CrossRefGoogle Scholar
  70. Sylvester-Bradley R, Asakawa N, Torraca SLA, Magalhaes FMM, Oliveira LA, Pereira RM (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amazôn 12:15–22Google Scholar
  71. Tamura K, Dudley J, Nei M, Sudhir K (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  72. Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Tadakatsu Y (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449CrossRefGoogle Scholar
  73. Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180PubMedCrossRefGoogle Scholar
  74. Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey R, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, CanberraGoogle Scholar
  75. Urquiaga S, Cruz K, Boddey R (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen balance estimates. Soil Sci Soc Am J 56:105–114CrossRefGoogle Scholar
  76. Urquiaga S, Xavier RP, de Morais RF, Batista RB, Schultz N, Leite JM, Maia e Sá J, Barbosa KP, de Resende AS, Alves BJR, Boddey RM (2011) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil (in press)Google Scholar
  77. Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotech 71:137–144CrossRefGoogle Scholar
  78. Velázquez E, Rojas M, Lorite MJ, Rivas R, Zurdo-Piñeiro JL, Heydrich M, Bedmar EJ (2008) Genetic diversity of endophytic bacteria which could be found in the apoplastic sap of the medullary parenchyma of the stems of healthy sugarcane plants. J Basic Microbiol 48:118–124PubMedCrossRefGoogle Scholar
  79. Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotech Lett 23:425–429CrossRefGoogle Scholar
  80. Weber OB, Baldani VLD, Texeira KRS, Kirchof G, Baldani JI, Dobereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113CrossRefGoogle Scholar
  81. Witty JF (1983) Estimating N2-fixation in the field using 1 N labeled fertilizer: some problems and solutions. Soil Biol Biochem 15:631–639CrossRefGoogle Scholar
  82. Yoneyama T, Muraoka T, Kim TH, Dacanay EV, Nakanishi Y (1997) The natural 15N abundance of sugar cane and neighbouring plants in Brazil, the Phillipines and Miyako (Japan). Plant Soil 189:239–244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Cecilia Taulé
    • 1
  • Cintia Mareque
    • 1
  • Claudia Barlocco
    • 2
  • Fernando Hackembruch
    • 3
  • Veronica M. Reis
    • 4
  • Margarita Sicardi
    • 2
  • Federico Battistoni
    • 1
  1. 1.Microbial Biochemistry and Genomics Department“Clemente Estable” Biological Research InstituteMontevideoUruguay
  2. 2.Soil Microbiology Laboratory, Science FacultyUdelaRMontevideoUruguay
  3. 3.Agriculture DepartmentAlcoholes del Uruguay S.A. (ALUR)ArtigasUruguay
  4. 4.EMBRAPA-Agrobiologia BR465Rio de JaneiroBrasil

Personalised recommendations