Skip to main content
Log in

Flooding effects on phosphorus dynamics in an Amazonian mangrove forest, Northern Brazil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims and methods

We examined porewater salinity, soil redox potential (Eh), soil extractable phosphate (extr.-P), leaf phosphorus (leaf-P) and plant growth in relation to inundation frequency (IF) and mangrove species distributions along a 600 m transect in the Bragança Peninsula, North Brazil.

Results

The forest species composition changed across the tidal zone with Avicennia germinans dominating (99.1%) the high intertidal (HI) zone where the IF was 41–67 d.y−1, Rhizophora mangle, Laguncularia racemosa and A. germinans co-occured in the mid intertidal (MI), and a mixed R. mangle (47.1%) - A, germinans (41.2%) stand occupied the low intertidal (LI) zone with an IF of 124–162 d.y−1. Low IF resulted in high Eh levels (200 mV) in the HI zone relative to the LI where Eh ranged from 0–100 mV. The IF showed a significant positive correlation with extr.-P (r = 0,89; p = 0.05) and a negative association with Eh (r = −0,75; p = 0.05).

Conclusion

An ANCOVA confirmed that Eh and extr.P were influenced by flooding. Variations in these factors were reflected in patterns of P leaf tissue concentrations across the gradient; however, a MANCOVA showed that leaf-P was not related to tree height, tree volume or basal area. Water-logging conditions, porewater salinity, and P dynamics in the sediment appear to influence the forest structure. We suggest that P availability plays an important role in controling mangrove species distributions but not their growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen SE (1989) Analysis of vegetation and other organic materials. In: Allen SE (ed) Chemical analysis of ecological materials. Blackwell Scientific, Australia, pp 46–60

    Google Scholar 

  • Alongi DM, Tirendi F, Clough BF (2000) Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquat Bot 68:97–122

    Article  Google Scholar 

  • Andersen FO, Kristensen E (1988) Oxygen microgradients in the rhizosphere of the mangrove Avicennia marina. Mar Ecol Prog Ser 44:201–204

    Article  Google Scholar 

  • Behling H, Costa M (2004) Mineralogy, geochemisty and palynology of modern and Late Tertiary mangrove deposits in the Barreiras Formation of Mosqueiro Island, northeastern Para State, Eastern Amazonia. J S Am Earth Sci 17:285–295

    Article  Google Scholar 

  • Behling H, Cohen MCL, Lara RJ (2001) Studies on Holocene mangrove ecosystem development and dynamics on the Bragança Peninsula in northeastern Pará, Brazil. Paleogeography, Paleoclimatology and Paleoecology 167:225–424

    Article  Google Scholar 

  • Berger U, Adams M, Grimm V, Hildenbrandt H (2005) Modelling secondary succession of neotropical mangroves: causes and consequences of growth reduction in pioneer species. Perspect Plant Ecol Evol Systemat 7:243–252

    Article  Google Scholar 

  • Boto KG, Wellington JT (1983) Phosphorus and nitrogen nutritional status of a Northern Australian mangrove forest. Mar Ecol Prog Ser 11:63–69

    Article  Google Scholar 

  • Boto KG, Wellington JT (1984) Soil characteristics and nutrient status in a northern Australian mangrove forest. Estuaries 7:61–69

    Article  CAS  Google Scholar 

  • Boto KG, Wellington JT (1988) Seasonal variation in concentrations and fluxes of dissolved organic and inorganic materials in a tropical, tidally-dominated, mangrove waterway. Mar Ecol Prog Ser 50:151–160

    Article  CAS  Google Scholar 

  • Caraco NF, Cole JJ, Likens GE (1989) Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341:316–318

    Article  CAS  Google Scholar 

  • Chapin SF, Cleve VC (1989) Approaches to studying nutrient uptake, use and loss in plants. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant Physiological Ecology. Field methods and instrumentation. Chapman & Hall, London, pp 185–207

    Google Scholar 

  • Chen R, Twilley RR (1999) Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22:955–970

    Article  Google Scholar 

  • Cintrón G, Schaeffer-Novelli Y (1984) Methods for studying mangrove structure. In: Snedaker SC, Snedaker JG (eds) The mangrove ecosystem: research methods. UNESCO, pp 91–113

  • Cintrón G, Lugo AE, Pool DJ, Morris G (1978) Mangroves of arid environments in Puerto Rico and adjacent islands. Biotropica 10:110–121

    Article  Google Scholar 

  • Clark MW, McConchie D, Lewis DW, Saenger P (1998) Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chem Geol 149:147–171

    Article  CAS  Google Scholar 

  • Cohen MCL, Lara RJ, Ramos JFF, Dittmar T (1999) Factors influencing the variability of magnesium, calcium and potassium in waters of a mangrove creek in Bragança, North Brazil. Mangroves and Salt Marshes 3:9–15

    Article  Google Scholar 

  • Cohen MCL, Lara RJ, Szlafsztein CF, Dittmar T (2001) Digital elevation model applied to mangrove coast analysis, Amazon region, Brazil. J Int Environ Creation 4:1–8

    Google Scholar 

  • Colonnello G, Medina E (1998) Vegetation changes induced by dam construction in a tropical estuary: the case of the Mánamo river, Orinoco Delta (Venezuela). Plant Ecol 139:145–154

    Article  Google Scholar 

  • Costa ML (1991) Aspectos geológicos dos lateritos da Amazônia. Revista Brasileira de Geociências 21:146–160

    Google Scholar 

  • Costa ML, Behling H, Berrêdo JF, doCarmo MS, Siqueira NVM (2004) Mineralogical, geochemical and palynological studies of late holocene mangrove sediments from Northeastern Pará State, Brazil. Revista Brasileira de Geociências 34:479–488

    Google Scholar 

  • Davis JC (1973) Statistics and data analysis in geology. John Wiley and Sons, Inc., New York, 473 pp

    Google Scholar 

  • Egler FE (1948) The dispersal and establishment of red mangrove in Florida. Carib For 9:299–310

    Google Scholar 

  • Ellison AM, Farnsworth EJ (1997) Simulated sea level change alters anatomy, physiology, growth and reproduction of red mangrove (Rhizophora mangle L.). Oecologia 112:435–446

    Article  Google Scholar 

  • Ensminger I (1996) Hydrologische Veränderungen am Canal Clarín und ihre Bedeutung für die Regeneration salzgeschädigter Mangrove. Dissertation, Justus-Liebig-University Gießen, Germany, pp 63

  • Feller IC (1995) Effects on nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monography 65:477–505

    Article  Google Scholar 

  • Feller IC, Whigham DF, O’Neill JP, McKee KL (1999) Effects of nutrient enrichment on within-stand cycling in a mangrove forest. Ecology 80:2193–2205

    Article  Google Scholar 

  • Feller IC, McKee KL, Whigham DF, O’Neill JP (2003) Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62:145–175

    Article  CAS  Google Scholar 

  • Feller IC, Lovelock CF, McKee KL (2007) Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems. Ecosystems 10:347–359

    Article  CAS  Google Scholar 

  • Frizano J, Vann DR, Johnson AH, Johnson CM (2003) Labile phosphorus in soils of forest fallows and primary forest in the Bragantina region, Brazil. Biotropica 35:2–11

    Google Scholar 

  • Furtado da Costa M (2000) Estudo dos cátions cálcio, magnésio, sódio, potássio e da salinidade na água intersticial do sedimento do manguezal de Bragança - NE do Pará. Dissertation. Federal University of Pará, Belém do Pará, Brazil, p 87

  • Georgantas DA, Grigoropoulou HP (2006) Phosphorus and organic matter removal from synthetic wastewater using alum and aluminum hydroxide. Global NEST J 10:1–9

    Google Scholar 

  • Gong W-K, Ong J-E (1990) Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuarine Coastal Shelf Sci 31:519–530

    Article  CAS  Google Scholar 

  • Gordon DM (1993) Diurnal water relations and the salt content of two contrasting mangroves growing in hypersaline soils in tropical-arid Australia. In: Lieth H, Masoon A (eds) Towards the rational use of high salninity tolerant plants, vol 1. Kluwer Academic, Amsterdam, pp 196–216

    Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremmling K (1983) Methods of seawater analysis. Verlag Chemie, Nürnberg, p 403

    Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (1999) Soil fertility and fertilizers, 6th edn. Prentice Hall, Upper Saddle River, p 499

    Google Scholar 

  • Hesse PR (1957) The effect of colloidal organic matter on the precipitation of barium sulphate and a modified method for determining soluble sulphate in soils. Analyst 82:710–712

    CAS  Google Scholar 

  • Hesse PR (1961) Some differences between the soils of Rhizophora and Avicennia mangrove swamps in Sierra Leone. Plant Soil 14:335–346

    Article  CAS  Google Scholar 

  • Johnson RA, Wichern DW (1999) Applied multivariate statistical analysis, 4th edn. Prentice Hall, Upper Saddle River, p 815

    Google Scholar 

  • Koch MS, Snedaker SC (1997) Factors influencing Rhizophora mangle L seedling development in Everglades carbonate soils. Aquat Bot 59:87–98

    Article  Google Scholar 

  • Krause G, Schories D, Diele K (2001) Spatial patterns of mangrove ecosystems: the Bragantinian mangrove of Northern Brazil (Bragança, Pará). Ecotropica 7:93–107

    Google Scholar 

  • Lacerda DL, Ittekkot V, Patchineelam SR (1995) Biochemistry of mangrove soil organic matter: a comparison between Rhizophora and Avicennia soils in south-eastern Brazil. Estuarine Coastal Shelf Sci 40:713–720

    Article  CAS  Google Scholar 

  • Lara RJ (2003) Amazonian mangroves – a multidisciplinary case study in Pará State, North Brazil: Introduction. Wetl Ecol Manag 11:217–221

    Article  Google Scholar 

  • Lara RJ, Cohen MCL (2006) Sediment porewater salinity, inundation frequency and mangrove vegetation height in Bragança, North Brazil: an ecohydrology-based empirical model. Wetl Ecol Manag 14:349–358

    Article  Google Scholar 

  • Lovelock CE, Feller IC, McKee KL, Thomilson R (2005) Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama. Caribb J Sci 41:456–464

    Google Scholar 

  • Lovelock CE, Ball CM, Choat B, Engelbrecht BMJ, Holbrook M, Feller IC (2006) Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant Cell Environ 29:793–802

    Article  PubMed  CAS  Google Scholar 

  • Marchand C, Baltzer F, Lallier-Vergès E, Albéric P (2004) Pore-water chemistry in mangrove sediments: relationship with species composition and developmental stages (French Guiana). Mar Geol 208:361–381

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889

    Google Scholar 

  • Matthijs S, Tack J, van Speybroeck D, Koedam N (1999) Mangrove species zonation and soil redox state, sulphide concentration and salinity in Gazi Bay (Kenya), a preliminary study. Mangroves and Salt Marshes 3:243–249

    Article  Google Scholar 

  • McKee KL (1993) Soil physicochemical patterns and mangrove species distribution - reciprocal effects? J Ecol 81:477–487

    Article  Google Scholar 

  • McKee KL (1996) Growth and physiological responses of neotropical mangrove seedling to root zone hypoxia. Tree Physiol 16:883–889

    PubMed  Google Scholar 

  • McKee KL, Mendelssohn IA, Hester MW (1988) Reexamination of porewater sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. Am J Bot 75:1352–1359

    Article  Google Scholar 

  • Medina E (1984) Nutrient balance and physiological processes at the leaf level, pp 139–154. In: Medina E, Mooney H A, Vázquez-Yánez C (eds) Physiological ecology of plants of the wet tropics. Proceedings of an International Symposium held in Oxatepec and Los Tuxtlas, Mexico. June 29 to July 6, 1983

  • Medina E, Francisco M (1997) Osmolality and δ13C of leaf tissues of mangrove species from environments of contrasting rainfall and salinity. Estuar Coast Shelf Sci 45:337–344

    Google Scholar 

  • Medina E, Giarrizzo T, Menezes M, Carvalho LM, Carvalho EA, Peres A, Silva B, Vilhena R, Reise A, Braga FC (2001) Mangal communities of the “Salgado Paraense”: Ecological heterogeneity along the Bragança Peninsula assessed through soil and leaf analyses. Amazoniana 16:397–416

    Google Scholar 

  • Medina E, Cuevas E, Lugo AE (2010) Nutrient relations of dwarf Rhizophora mangle L mangroves on peat in eastern Puerto Rico. Plant Ecol 207:13–24

    Article  Google Scholar 

  • Mehlig U (2001) Aspects on tree primary production in an equatorial mangrove forest in Brazil. Dissertation, Center of Marine Tropical Ecology, Bremen University, Germany, pp 155

  • Mendoza U (2007) Dynamics of phosphorus and sulphur in a mangrove forest in Bragança, North Brazil. Dissertation, Center of Marine Tropical Ecology, Bremen University, Germany, pp 133

  • Menezes M (2006) Investigations of mangrove forest dynamics in Amazonia, North Brazil. Dissertation, Center of Marine Tropical Ecology, Bremen University, Germany, pp 149

  • Nässer von K-H (1976) Physikalische Chemie für Techniker und Ingenieure. Dt. Verl. für Grundstoffindustrie, Leipzig, p 480

    Google Scholar 

  • Nickerson NH, Thibodeau FR (1985) Association between porewater sulphide concentrations and the distribution of mangroves. Biogeochemistry 1:183–192

    Article  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. In: Brady NC (ed) Advances in agronomy. American Society of Agronomy, New York, pp 29–88

    Google Scholar 

  • Reise A (2003) Estimates of biomass and productivity in fringe mangroves of North-Brazil. Dissertation, Center of Marine Tropical Ecology, Bremen University, Germany, pp 166

  • Rickard D, Morse JW (2005) Acid volatile sulfide (AVS). Mar Chem 97:141–197

    Article  CAS  Google Scholar 

  • Saleque MA, Kirk GJD (1995) Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytology 129:325–336

    Article  CAS  Google Scholar 

  • Shapiro RE (1958) Effect of flooding on availability of phosphorus and nitrogen. Soil Sci 85:190–197

    Article  CAS  Google Scholar 

  • Sherman RE, Fahey TJ, Howarth RW (1998) Soil-Plant interaction in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia 115:553–563

    Article  Google Scholar 

  • Sherman RE, Fahey TJ, Martinez P (2003) Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6:384–398

    Article  Google Scholar 

  • Silva CAR (1992) Formas e taxas de ciclagem do fósforo no ecossistema manguezal de Itacurucá, Baía de Sepetiba, RJ. Dissertation, Ecologia e Recursos Naturais, Universidade Federal de São Carlos, São Paulo, Brazil, pp 118

  • Snedaker SC (1982) Mangrove species zonation: why? In: Sen DN, Rajpurohit KS (eds) Contribution to the ecology of halophytes. Kluwer, Netherlands, pp 111–125

    Chapter  Google Scholar 

  • Solorzano L, Sharp JH (1980) Determination of total dissolved phosphorous and particulate phosphorous in natural waters. Limnol Oceanogr 25:754–758

    Article  CAS  Google Scholar 

  • Souza-Filho PWM (1995) A planície costeira bragantina (NE do Pará): influência das variações do nível do mar na morfoestratigrafia costeira durante o Holoceno. Dissertation, Universidade Federal de Belém, Belém do Pará, Brasil, pp 123

  • Tomlinson PB (1986) The botany of mangrove. Cambridge University Press, UK, p 413

    Google Scholar 

  • Upkong IE (1991) The performance and distribution of species along soil salinity gradients of mangrove swamps in southeastern Nigeria. Vegetatio 95:63–70

    Article  Google Scholar 

  • Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta 60:3897–3912

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is a result of cooperation between the Center of Tropical Marine Ecology (ZMT), Bremen, Germany and the Universidade Federal do Pará (UFPa), Belém, Brazil, under the Governmental Agreement on Cooperation in the Field of Scientific Research and Technological Development between Germany and Brazil financed by the German Ministry of Education, Science, Research and Technology (BMBF). (MADAM – Mangrove Dynamics and Management, Project No. 03F-0154A) and the Conselho Nacional de Pesquisa e Tecnologia (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula N. Mendoza.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza, U.N., da Cruz, C.C., Menezes, M.P. et al. Flooding effects on phosphorus dynamics in an Amazonian mangrove forest, Northern Brazil. Plant Soil 353, 107–121 (2012). https://doi.org/10.1007/s11104-011-1013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-1013-6

Keywords

Navigation