Plant and Soil

, Volume 352, Issue 1–2, pp 157–171 | Cite as

In situ biogenic silica variations in the invasive salt marsh plant, Spartina alterniflora: A possible link with environmental stress

  • Jérémy Querné
  • Olivier Ragueneau
  • Nathalie Poupart
Regular Article



Higher plants are an understudied component of the global silicon cycle; they absorb silicic acid (dSi) which is stored as biogenic silica (bSiO2). Si is believed to alleviate physical, chemical, and biological stresses such as storms, high salinity, heavy metal toxicity, grazing, and disease. We investigated a Si-accumulating invasive species growing in the tidal marshes of the Bay of Brest (France), viz., Spartina alterniflora. Our objectives were to determine (1) where and when bSiO2 accumulates in the plant during its life cycle, (2) whether this accumulation varies with abiotic factors: wave action, estuarine salinity, and duration of immersion, and (3) if the accumulation was limited by dSi availability in marsh porewater.


A 2 years field survey permitted to sample plants which were analyzed for there bSiO2 concentrations. Sediment cores were sampled seasonally and the dSi concentrations in the porewater were measured from 0 to 10 cm.


bSiO2 accumulated more in mature leaves than in other organs. There was a strong linear relationship between bSiO2 concentration and plant length. bSiO2 concentrations did not increase, but rather decreased as a function of exposure to the three abiotic factors tested. dSi availability was not significantly different for each of the tested sites and dSi profiles did not exhibit huge losses in the root zone.


Our evidence suggests that dSi availability did not seem to be a limiting factor. bSiO2 did not increase with increasing abiotic stresses but was strongly correlated with growth. Hence, S. alterniflora is likely to have other adaptive strategies for dealing with environmental stressors but it did not exclude the possible role of Si in alleviating these stresses. If this is the case, there remain intriguing questions about Si uptake, its availability, and its role in silicification and growth.


Abiotic factors Biogenic silica Duration of immersion Estuarine salinity Spartina alterniflora Wave activity 


  1. Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371–375PubMedCrossRefGoogle Scholar
  2. Bougault C, Hardegen M, Quéré E (2004) Site Natura 2000 n°46: Rade de Brest, Estuaire de l’Aulne. Inventaire et cartographie des habitats terrestres et des espèces végétales d’intérêt communautaire. 175 pGoogle Scholar
  3. Bougault C, Hardegen M, Quéré E (2005) Site Natura 2000 N° 24: Rivière Elorn. Inventaire et cartographie des habitats terrestres et des espèces végétales d’intérêt communautaire. 175 pGoogle Scholar
  4. Brewer PG, Riley JP (1966) The automatic determination of silicate-silicon in natural waters with special reference to sea water. Anal Chim Acta 35:514–519CrossRefGoogle Scholar
  5. Callaway J, Josselyn M (1992) The introduction and spread of smooth cordgrass (Spartina alterniflora) in South San Francisco Bay. Estuar Coast 15:218–226CrossRefGoogle Scholar
  6. Cavalieri AJ (1983) Proline and glycinebetaine accumulation by Spartina alterniflora Loisel. in response to NaCl and nitrogen in a controlled environment. Oecologia 57:20–24CrossRefGoogle Scholar
  7. Chauvaud L, Jean F, Ragueneau O, Thouzeau G (2000) Long-term variation of the Bay of Brest ecosystem: benthic–pelagic coupling revisited. Mar Ecol Prog Ser 200:35–48CrossRefGoogle Scholar
  8. Chelaifa H, Monnier A, Ainouche M (2010) Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina townsendii and Spartina anglica (Poaceae). New Phytol 186:161–174PubMedCrossRefGoogle Scholar
  9. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16:1121CrossRefGoogle Scholar
  10. Dame RF, Kenny PD (1986) Variability of Spartina alterniflora primary production in the euhaline North Inlet estuary. Mar Ecol Prog Ser 32:71–80CrossRefGoogle Scholar
  11. Darby FA, Turner RE (2008) Below- and Aboveground Spartina alterniflora Production in a Louisiana Salt Marsh. Estuar Coast 31:223–231CrossRefGoogle Scholar
  12. De Bakker NVJ, Hemminga MA, Van Soelen J (1999) The relationship between silicon availability, and growth and silicon concentration of the salt marsh halophyte Spartina anglica. Plant Soil 215:19–27CrossRefGoogle Scholar
  13. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731PubMedCrossRefGoogle Scholar
  14. Diggelen JV, Rozema J, Dickson DMJ, Broekman R (1986) β-3 Dimethylsulphoniopropionate, proline and quaternary ammonium compounds in Spartina anglica in relation to sodium chloride, nitrogen and sulphur. New Phytol 103:573–586CrossRefGoogle Scholar
  15. Epstein E (1994) The anomaly of silicon in plant biology. Proc Nat Aca Sci USA 91:11–17CrossRefGoogle Scholar
  16. Epstein E (1999) Silicon. Annu Rev Plant Physio 50:641–664CrossRefGoogle Scholar
  17. Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160CrossRefGoogle Scholar
  18. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. Sinauer, SunderlandGoogle Scholar
  19. Farmer V, Delbos E, Miller J (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127:71–79CrossRefGoogle Scholar
  20. Gleason ML, Elmer DA, Pien NC, Fisher JS (1979) Effects of stem density upon sediment retention by salt marsh cord grass. Spartina alterniflora Loisel. Estuar Coast 2:271CrossRefGoogle Scholar
  21. Hackney CT, Cahoon LB, Preziosi C, Norris A (2002) Silicon is the link between tidal marshes and estuarine fisheries: a new paradigm. In: Weinstein MP, Kreeger DA (eds) Concept and controversies in tidal marsh ecology. Kluwer, Dordrecht, pp 543–552CrossRefGoogle Scholar
  22. Haines BL, Dunn EL (1976) Growth and resource allocation responses of Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh. Ecology 61:303–312Google Scholar
  23. Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046PubMedCrossRefGoogle Scholar
  24. Hou L, Liu M, Yang Y, Ou D, Lin X, Chen H (2010) Biogenic silica in intertidal marsh plants and associated sediments of the Yangtze Estuary. J Environ Sci 22:374–380CrossRefGoogle Scholar
  25. Jacobs S, Struyf E, Maris T, Meire P (2008) Spatiotemporal aspects of silica buffering in restored tidal marshes. Estuar Coast Shelf Sci 80:42–52CrossRefGoogle Scholar
  26. Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164PubMedCrossRefGoogle Scholar
  27. Liang Y, Sun W, Zhu Y, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428PubMedCrossRefGoogle Scholar
  28. Linthurst RA, Seneca ED (1980) The effects of standing water and drainage potential on the Spartina alterniflora substrate complex in a North Carolina salt marsh. Estuar Coast Mar Sci 11:41–52CrossRefGoogle Scholar
  29. Linthurst RA, Seneca ED (1981) Aeration, nitrogen and salinity as determinants of Spartina alterniflora Loisel. growth response. Estuaries 4:53–63CrossRefGoogle Scholar
  30. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  31. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, AmsterdamGoogle Scholar
  32. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397PubMedCrossRefGoogle Scholar
  33. Matoh T, Kairusmee P, Takahashi E (1986) Salt induced damage to rice plants and alleviation effect of silicate. Soil Sci Plant Nutr 32:295–304Google Scholar
  34. McNaughton SJ, Tarrants JL (1983) Grass leaf silicification: natural selection for an inducible defense against herbivores. Proc Nat Aca Sci USA 80:790–791CrossRefGoogle Scholar
  35. McNaughton SJ, Tarrants JL, McNaughton MM, Davis V (1985) Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66:528–535CrossRefGoogle Scholar
  36. Mendelssohn IA, Morris JT (2002) Eco-physiological controls on the productivity of Spartina alterniflora Loisel. In: Weinstein MP, Kreeger DA (eds) Concept and controversies in tidal marsh ecology. Kluwer, Dordrecht, pp 59–80CrossRefGoogle Scholar
  37. Motomura H, Fujii T, Suzuki M (2004) Silica Deposition in Relation to Ageing of Leaf Tissues in Sasa veitchii (Carriere) Rehder (Poaceae: Bambusoideae). Ann Bot 93:235–248PubMedCrossRefGoogle Scholar
  38. Norris AR, Hackney CT (1999) Silica content of a mesohaline tidal marsh in North Carolina. Estuar Coast Shelf Sci 49:597–605CrossRefGoogle Scholar
  39. Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic, New YorkGoogle Scholar
  40. Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Altamira, LanhamGoogle Scholar
  41. Pondaven P, Gallinari M, Chollet S, Bucciarelli E, Sarthou G, Schultes S, Jean F (2007) Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158:21–28PubMedCrossRefGoogle Scholar
  42. Quéré E, Magnanon S, Annézo N (2010) Vingt ans de suivi et de conservation du Limmonium humile Miller en rade de Brest. ERICA 23:101–121Google Scholar
  43. Querné J, Poupart N, Legoff M, Chapalain G, Ragueneau O (in revision) Variations of growth and primary production of invading Spartina alterniflora along tidal marshes of a semi-enclosed European bay. Aquat BotGoogle Scholar
  44. Raven JA (2003) Cycling silicon: the role of accumulation in plants. New Phytol 158:419–421CrossRefGoogle Scholar
  45. Roland RM, Douglass SL (2005) Estimating wave tolerance of Spartina alterniflora in coastal alabama. J Coast Res 21:453–463CrossRefGoogle Scholar
  46. Saccone L, Conley DJ, Sauer D (2006) Methodologies for amorphous silica analysis. J Geochem Explor 88:235–238CrossRefGoogle Scholar
  47. Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol 186:385–391PubMedCrossRefGoogle Scholar
  48. Sleimi N, Abdelly C (2004) Salt-tolerance strategy of two halophyte species: Spartina alterniflora and Suaeda fruticosa. In: Lieth H, Mochtchenko M (eds) Cash crop halophytes recent studies – Ten years after Al Ain meeting. Kluwer, Dordrecht, pp 79–85Google Scholar
  49. Smalley AE (1959) The role of two invertebrate populations, Littorina irrorate and Orchelimum fidicinium, in the energy flow of a salt marsh ecosystem. PhD thesis, University of Georgia, AthensGoogle Scholar
  50. Smetacek V, Assmy P, Henjes J (2004) The role of grazing in structuring Southern Ocean Pelagic ecosystems and biogeochemical cycles. Antar Sci 16:541–558CrossRefGoogle Scholar
  51. Sparfel L, Fichaut B, Suanez S (2005) Progression de la Spartine (Spartina alterniflora Loisel) en Rade de Brest (Finistère) entre 1952 et 2004: de la mesure à la réponse gestionnaire. Norois 196:109–123Google Scholar
  52. Street-Perrott FA, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Proc Land 33:1436–1457CrossRefGoogle Scholar
  53. Struyf E, Conley DJ (2009) Silica, an essential nutrient in wetland biogeochemistry. Front Ecol Environ 7:88–94CrossRefGoogle Scholar
  54. Struyf E, Van Damme S, Gribsholt B, Middelburg JJ, Meire P (2005) Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium). Mar Ecol Prog Ser 303:51–60CrossRefGoogle Scholar
  55. Struyf E, Van Damme S, Gribsholt B, Bal K, Beauchard O, Middelburg JJ, Meire P (2007) Phragmites australis and silica cycling in tidal wetlands. Aquat Bot 87:134–140CrossRefGoogle Scholar
  56. Sun L, Wu LH, Ding TP, Tian SH (2008) Silicon isotope fractionation in rice plants, an experimental study in rice growth under hydroponic conditions. Plant Soil 304:291–300CrossRefGoogle Scholar
  57. Swales A, MacDonald I, Green M (2004) Influence of wave and sediment dynamics on cordgrass (Spartina anglica) growth and sediment accumulation on an exposed intertidal flat. Estuar Coast 27:225–243CrossRefGoogle Scholar
  58. Tesson Y, Quéré E, Magnanon S (1997) Suivi des populations de Limonium humile en rade de Brest (Rapport final 1997). Rapport Conservatoire Botanique National de Brest pour la Communauté Urbaine de Brest et le Conseil Général du FinistèreGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jérémy Querné
    • 1
    • 2
    • 3
  • Olivier Ragueneau
    • 1
  • Nathalie Poupart
    • 2
  1. 1.LEMAR UMR6539, U.B.O, Institut Universitaire Européen de la Mer, I.U.E.MUniversité de Bretagne OccidentalePlouzaneFrance
  2. 2.LEBHAM EA3877, U.B.O, Institut Universitaire Européen de la Mer, I.U.E.MUniversité de Bretagne OccidentalePlouzaneFrance
  3. 3.GEOMER UMR6554, U.B.O, Institut Universitaire Européen de la Mer, I.U.E.MUniversité de Bretagne OccidentalePlouzaneFrance

Personalised recommendations