Advertisement

Plant and Soil

, Volume 351, Issue 1–2, pp 377–387 | Cite as

Distribution and variability of silicon, copper and zinc in different bamboo species

  • Blanche Collin
  • Emmanuel Doelsch
  • Catherine Keller
  • Frédéric Panfili
  • Jean-Dominique Meunier
Regular Article

Abstract

Aims

With a high growth rate and biomass production, bamboos are frequently used for industrial applications and recently have proven to be useful for wastewater treatment. Bamboos are considered as Si accumulators and there is increasing evidence that silicon may alleviate abiotic stresses such as metal toxicity. The aim of this study was to investigate the extent of metal concentrations and possible correlations with Si concentrations in plants.

Methods

This study presents, for the first time, reference values for silicon (Si), copper (Cu) and zinc (Zn) concentrations in stems and leaves of various bamboo species grown under the natural pedo-climatic conditions of the island of Réunion (Indian Ocean).

Results

A broad range of silicon concentrations, from 0 (inferior to detection limit) to 183 mg g−1 dry matter (DM), were found in stems and leaves. Mean leaf Cu and Zn concentrations were low, i.e. 5.1 mg kg−1 DM and 15.7 mg kg−1 DM, respectively. Silicon, Cu and Zn concentrations increased over the following gradient: stem base < stem tip < leaves. Significant differences in Si, Cu and Zn contents (except Zn in the stem) were noted between bamboo species, particularly between monopodial and sympodial bamboo species, which differ in their rhizome morphology. Sympodial bamboos accumulated more Si and Cu than monopodial bamboos, in both stems and leaves, whereas sympodial bamboos accumulated less Zn in leaves than monopodial bamboos.

Conclusions

The findings of this study suggest that a genotypic character may be responsible for Si, Cu and Zn accumulation in bamboo.

Keywords

Trace element Silica Poaceae Genotypic variability Island of Réunion 

Notes

Acknowledgments

This work was financially supported by the Direction Générale des Entreprises, Direction Générale de la Compétitivité, de l’Industrie et des Services, région Réunion, région PACA in the frame of the research program RUN INNOVATION II and by the Association Nationale de la Recherche et de la Technologie (CIFRE grant).

The authors thank Mr Alexandre Perrussot, Mr Gregory Bois and MmeVeronique Arfi for their assistance and fruitful discussions.

References

  1. Arfi V, Bagoudou D, Korboulewsky N, Bois G (2009) Initial efficiency of a bamboo grove-based treatment system for winery wastewater. Desalination 246(1–3):69–77CrossRefGoogle Scholar
  2. Basile-Doelsch I, Amundson R, Stone WEE, Masiello CA, Bottero JY, Colin F, Masin F, Borschneck D, Meunier JD (2005) Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Reunion. Eur J Soil Sci 56(6):689–703Google Scholar
  3. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702PubMedCrossRefGoogle Scholar
  4. Cakmak I, Sari N, Marschner H, Ekiz H, Kalayci M, Yilmaz A, Braun HJ (1996) Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180(2):183–189CrossRefGoogle Scholar
  5. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  6. Collin B, Doelsch E (2010) Impact of high natural soilborne heavy metal concentrations on the mobility and phytoavailability of these elements for sugarcane. Geoderma 159(3–4):452–458CrossRefGoogle Scholar
  7. Deren CW, Glaz B, Snyder GH (1993) Leaf-tissue silicon content of sugarcane genotypes grown on everglades histosols. J Plant Nutr 16(11):2273–2280CrossRefGoogle Scholar
  8. Deren CW, Datnoff LE, Snyder GH, Korndorfer GH (2001) Plant genotype, silicon concentration, and silicon-related responses. Stud Plant Sci 8:149–158CrossRefGoogle Scholar
  9. Ding TP, Zhou JX, Wan DF, Chen ZY, Wang CY, Zhang F (2008) Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochim Cosmochim Acta 72(5):1381–1395CrossRefGoogle Scholar
  10. Doelsch E, Van de Kerchove V, Saint Macary H (2006) Heavy metal content in soils of Reunion (Indian Ocean). Geoderma 134(1–2):119–134CrossRefGoogle Scholar
  11. Doelsch E, Masion A, Moussard G, Chevassus-Rosset C, Wojciechowicz O (2010) Impact of pig slurry and green waste compost application on heavy metal exchangeable fractions in tropical soils. Geoderma 155(3–4):390–400CrossRefGoogle Scholar
  12. Embaye K, Weih M, Ledin S, Christersson L (2005) Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia: implications for management. Forest Ecol Manag 204(2–3):159–169CrossRefGoogle Scholar
  13. Feng Ma J, Higashitani A, Sato K, Takeda K (2003) Genotypic variation in silicon concentration of barley grain. Plant Soil 249(2):383–387CrossRefGoogle Scholar
  14. Franco CR, Chagas AP, Jorge RA (2002) Ion-exchange equilibria with aluminum pectinates. Colloid Surface Physicochem Eng Aspect 204(1–3):183–192CrossRefGoogle Scholar
  15. Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006) Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287(1):359–374CrossRefGoogle Scholar
  16. Henriet C, Bodarwe L, Dorel M, Draye X, Delvaux B (2008) Leaf silicon content in banana (Musa spp.) reveals the weathering stage of volcanic ash soils in Guadeloupe. Plant Soil 313(1–2):71–82CrossRefGoogle Scholar
  17. Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96(6):1027–1046PubMedCrossRefGoogle Scholar
  18. Jones LHP, Handreck KA, Norman AG (1967) Silica in soils, plants, and animals. In: Advances in Agronomy, vol 19. Academic Press, pp 107–149Google Scholar
  19. Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. SpringerGoogle Scholar
  20. Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ Exp Bot 66(1):54–60CrossRefGoogle Scholar
  21. Keller C (2005) Efficiency and limitations of phytoextraction by high biomass plants. In: Trace elements in the environment. CRC Press, pp 611–630Google Scholar
  22. Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249(1):67–81CrossRefGoogle Scholar
  23. Khandekar S, Leisner S (2011) Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. J Plant Physiol 168(7):699–705PubMedCrossRefGoogle Scholar
  24. Kleinhenz V, Midmore DJ (2001) Aspects of bamboo agronomy. In: Sparks DL (ed) Advances in agronomy, vol 74. Academic, New York, pp 99–153Google Scholar
  25. Langer I, Syafruddin S, Steinkellner S, Puschenreiter M, Wenzel WW (2010) Plant growth and root morphology of Phaseolus vulgaris L. grown in a split-root system is affected by heterogeneity of crude oil pollution and mycorrhizal colonization. Plant Soil 332(1–2):339–355CrossRefGoogle Scholar
  26. Li Z-J, Lin P, He J-Y, Yang Z-W, Lin Y-M (2006) Silicon’s organic pool and biological cycle in moso bamboo community of Wuyishan Biosphere Reserve. J Zhejiang Univ Sci B 7(11):849–857PubMedCrossRefGoogle Scholar
  27. Li J, Leisner M, Frantz J (2008) Alleviation of copper toxicity in Arabidopsis thaliana by silicon addition to hydroponic solutions. J Am Soc Hort Sci 133(5):670–677Google Scholar
  28. Liang YC, Sun WC, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2):422–428PubMedCrossRefGoogle Scholar
  29. Liao M, Hedley M, Woolley D, Brooks R, Nichols M (2000) Copper uptake and translocation in chicory (Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv. Rondy) plants grown in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport. Plant Soil 223(1):245–254CrossRefGoogle Scholar
  30. Lux A, Luxova M, Abe J, Morita S, Inanaga S (2003) Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant Soil 255:85–91CrossRefGoogle Scholar
  31. Ma JF, Takahashi E (2002) Soil, fertilizer and plant silicon research in Japan. Elsevier ScienceGoogle Scholar
  32. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65(19):3049–3057PubMedCrossRefGoogle Scholar
  33. Ma JF, Yamaji N, Tamai K, Mitani N (2007) Genotypic Difference in Silicon Uptake and Expression of Silicon Transporter Genes in Rice. Plant Physiol 145(3):919–924PubMedCrossRefGoogle Scholar
  34. McClure FA (1966) The bamboos. A fresh perspective. Harvard University Press, MassachusettsGoogle Scholar
  35. McCutcheon SC, Schnoor JL (2003) Phytoremediation—Transformation and control of contaminants. Wiley Inter-science, USAGoogle Scholar
  36. Meunier J-D, Colin F, Alarcon C (1999) Biogenic silica storage in soils. Geology 27:835–838CrossRefGoogle Scholar
  37. Morsomme P, Boutry M (2000) The plant plasma membrane H + -ATPase: structure, function and regulation. Biochim Biophys Acta Biomembr 1465(1–2):1–16CrossRefGoogle Scholar
  38. Motomura H, Mita N, Suzuki M (2002) Silica accumulation in long-lived leaves of Sasa veitchii (Carriere) Rehder (Poaceae-Bambusoideae). Ann Bot 90(1):149–152PubMedCrossRefGoogle Scholar
  39. Neumann D, zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochem 56(7):685–692CrossRefGoogle Scholar
  40. Novak JM, Watts DW, Stone KC (2004) Copper and zinc accumulation, profile distribution, and crop removal in coastal plain soils receiving long-term, intensive applications of swine manure. Trans Am Soc Agric Eng 47(5):1513–1522Google Scholar
  41. Raunet M (1991) Le milieu physique et les sols de l’île de la Réunion. Conséquences pour la mise en valeur agricole. CIRAD IRAT, MontpellierGoogle Scholar
  42. Rengel Z, Romheld V, Marschner H (1998) Uptake of zinc and iron by wheat genotypes differing in tolerance to zinc deficiency. J Plant Physiol 152(4–5):433–438CrossRefGoogle Scholar
  43. Shanmughavel P, Francis K (2001) Bioproductivity and nutrient cycling in bamboo and acacia plantation forests. Biores Tech 80(1):45–48CrossRefGoogle Scholar
  44. Tolay I, Erenoglu B, Romheld V, Braun HJ, Cakmak I (2001) Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies. J Exp Bot 52(358):1093–1099PubMedCrossRefGoogle Scholar
  45. Whiting SN, Leake JR, McGrath SP, Baker AJM (2000) Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol 145(2):199–210CrossRefGoogle Scholar
  46. Winslow MD, Okada K, CorreaVictoria F (1997) Silicon deficiency and the adaptation of tropical rice ecotypes. Plant Soil 188(2):239–248CrossRefGoogle Scholar
  47. Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142(2):731–741PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Blanche Collin
    • 1
    • 2
  • Emmanuel Doelsch
    • 3
  • Catherine Keller
    • 2
  • Frédéric Panfili
    • 1
  • Jean-Dominique Meunier
    • 2
  1. 1.Département de recherche développement de la société PHYTOREM S.A.MiramasFrance
  2. 2.CEREGE, CNRS, Aix-Marseille UniversitéAix en ProvenceFrance
  3. 3.CIRAD, UPR Recyclage et RisqueMontpellierFrance

Personalised recommendations