Advertisement

Plant and Soil

, Volume 350, Issue 1–2, pp 35–42 | Cite as

Biochar’s role as an alternative N-fertilizer: ammonia capture

  • Kurt A. Spokas
  • Jeff M. Novak
  • Rodney T. Venterea
Commentary

Abstract

Background

Biochar’s role as a carbon sequestration agent, while simultaneously providing soil fertility improvements when used as an amendment, has been receiving significant attention across all sectors of society, ranging from academia, industry, government, as well as the general public. This has lead to some exaggeration and possible confusion regarding biochar’s actual effectiveness as a soil amendment. One sparsely explored area where biochar appears to have real potential for significant impact is the soil nitrogen cycle.

Scope

Taghizadeh-Toosi et al. (this issue) examined ammonia sorption on biochar as a means of providing a nitrogen-enriched soil amendment. The longevity of the trapped ammonia was particularly remarkable; it was sequestered in a stable form for at least 12 days under laboratory air flow. Furthermore, the authors observed increased 15N uptake by plants grown in soil amended with the 15N-enriched biochar, indicating that the 15N was not irreversibly bound, but, was plant-available.

Conclusions

Their observations add credence to utilizing biochar as a carrier for nitrogen fertilization, while potentially reducing the undesired environmental consequences through gas emissions, overland flow, and leaching.

Keywords

Biochar Black carbon Nitrogen fertilization Nitrogen cycle 

References

  1. Amutio M, Lopez G, Artetxe M, Elordi G, Olazar M, Bilbao J (2011) Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour Conserv Recycl In Press, doi: 10.1016/j.resconrec.2011.04.002
  2. Ania ACO, Cabal CB, Parra PJB, Pis PJJ (2007) Importance of the hydrophobic character of activated carbons on the removal of naphthalene from the aqueous phase. Adsorp Sci Technol 25(3):155–167CrossRefGoogle Scholar
  3. Ascough PL, Bird MI, Francis SM, Thornton B, Midwood AJ, Scott AC, Apperley D (2011) Variability in oxidative degradation of charcoal: influence of production conditions and environmental exposure. Geochim Cosmochim Acta 75(9):2361–2378. doi: 10.1016/j.gca.2011.02.002 CrossRefGoogle Scholar
  4. Atkinson C, Fitzgerald J, Hipps N (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337(1):1–18. doi: 10.1007/s11104-010-0464-5 CrossRefGoogle Scholar
  5. Azargohar R, Dalai AK (2011) The direct oxidation of hydrogen sulphide over activated carbons prepared from lignite coal and biochar. Can J Chem Eng: In press. doi: ep.10378/cjce.20430
  6. Bailey VL, Fansler SJ, Smith JL, Bolton H Jr (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43(2):296–301. doi: 10.1016/j.soilbio.2010.10.014 CrossRefGoogle Scholar
  7. Bandosz TJ (2006) Activated carbon surfaces in environmental remediation. Elsevier, OxfordGoogle Scholar
  8. Bandosz TJ, Petit C (2009) On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. J Colloid Interface Sci 338(2):329–345. doi: 10.1016/j.jcis.2009.06.039 PubMedCrossRefGoogle Scholar
  9. Biniak S, Szymanski G, Siedlewski J, Swiatkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12):1799–1810. doi: 10.1016/s0008-6223(97)00096-1 CrossRefGoogle Scholar
  10. Boehm HP (1966) Chemical identification of surface groups. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis, vol 16. Academic Press, pp 179–274Google Scholar
  11. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769. doi: 10.1016/0008-6223(94)90031-0 CrossRefGoogle Scholar
  12. Boehm HP, Diehl E, Heck W, Sappok R (1964) Surface oxides of carbon. Angew Chem 3(10):669–677. doi: 10.1002/anie.196406691, International Edition in EnglishCrossRefGoogle Scholar
  13. Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds. Pure Appl Chem 66(9):1893–1901CrossRefGoogle Scholar
  14. Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Progr Sust Energy 28(3):386–396. doi: 10.1002/ep.10378 CrossRefGoogle Scholar
  15. Cabrera-Mesa A, Spokas K (2011) Impacts of biochar (Black Carbon) additions on the sorption and efficacy of herbicides. In: Kortekamp A (ed) Herbicides and environment. InTech, pp 315–340Google Scholar
  16. Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76(1):127–133. doi: 10.1016/j.chemosphere.2009.02.004 PubMedCrossRefGoogle Scholar
  17. Chen H, Chen S, Quan X, Zhao HM, Zhang YB (2008) Sorption of polar and nonpolar organic contaminants by oil-contaminated soil. Chemosphere 73(11):1832–1837. doi: 10.1016/j.chemosphere.2008.08.005 PubMedCrossRefGoogle Scholar
  18. Cheng C, Lehmann J, Thies J, Burton S, Engelhard M (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37(11):1477–1488Google Scholar
  19. Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610. doi: 10.1016/j.gca.2008.01.010 CrossRefGoogle Scholar
  20. Chun Y, Sheng GY, Chiou CT, Xing BS (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38(17):4649–4655. doi: 10.1021/Es035034w PubMedCrossRefGoogle Scholar
  21. Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39(4):1218–1223. doi: 10.2134/jeq2010.0204 PubMedCrossRefGoogle Scholar
  22. Clough TJ, Bertram JE, Ray JL, Condron LM, O’Callaghan M, Sherlock RR, Wells NS (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci Soc Am J 74(3):852–860. doi: 10.2136/sssaj2009.0185 CrossRefGoogle Scholar
  23. Elmquist M, Cornelissen G, Kukulska Z, Gustafsson Ö (2006) Distinct oxidative stabilities of char versus soot black carbon: implications for quantification and environmental recalcitrance. Global Biogeochem Cy 20(2):GB2009. doi: 10.1029/2005gb002629 CrossRefGoogle Scholar
  24. Fletcher AJ, Uygur Y, Thomas KM (2007) Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. J Phys Chem C 111(23):8349–8359. doi: 10.1021/jp070815v CrossRefGoogle Scholar
  25. Francioso O, Sanchez-Cortes S, Bonora S, Roldán ML, Certini G (2011) Structural characterization of charcoal size-fractions from a burnt Pinus pinea forest by FT-IR, Raman and surface-enhanced Raman spectroscopies. J Mol Struct 994(1–3):155–162. doi: 10.1016/j.molstruc.2011.03.011 CrossRefGoogle Scholar
  26. Franz M, Arafat HA, Pinto NG (2000) Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 38(13):1807–1819. doi: 10.1016/s0008-6223(00)00012-9 CrossRefGoogle Scholar
  27. Garcia-Perez M, Wang XS, Shen J, Rhodes MJ, Tian F, Lee W-J, Wu H, Li C-Z (2008) Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products. Ind Eng Chem Res 47(6):1846–1854. doi: 10.1021/ie071497p CrossRefGoogle Scholar
  28. Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agriculutral use. Trans ASABE 51(6):2061–2069Google Scholar
  29. Goldberg ED (1985) Black carbon in the environment: properties and distribution. Wiley, New YorkGoogle Scholar
  30. Guo Z, Xie Y, Hong I, Kim J (2001) Catalytic oxidation of NO to NO2 on activated carbon. Energ Convers Manag 42(15–17):2005–2018. doi: 10.1016/s0196-8904(01)00058-9 CrossRefGoogle Scholar
  31. Hammes K, Schmidt MI, Smernik R, Currie L, Ball W, Nguyen T, Louchouarn P et al (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cy 21(3):18 GB3016, doi: 10.1029/2006GB002914
  32. Hayati D, Ranjbar Z, Karami E (2011) Measuring agricultural sustainability. In: Lichtfouse E (ed) biodiversity, biofuels, agroforestry and conservation agriculture, vol 5. Sustainable Agriculture Reviews. Springer Netherlands, pp 73–100. doi: 10.1007/978-90-481-9513-8_2
  33. Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31(10):945–958. doi: 10.1016/s0146-6380(00)00096-6 CrossRefGoogle Scholar
  34. Hina K, Bishop P, Arbestain MC, Calvelo-Pereira R, Macia-Agullo JA, Hindmarsh J, Hanly JA, Macias F, Hedley MJ (2010) Producing biochars with enhanced surface activity through alkaline pretreatment of feedstocks. Aust J Soil Res 48(6–7):606–617. doi: 10.1071/sr10015 CrossRefGoogle Scholar
  35. Holmes JM, Beebe RA (1957) An example of desorption hysteresis at low relative pressures on a non-porous adsorbent: ammonia on graphitized carbon black. J Phys Chem 61(12):1684–1686. doi: 10.1021/j150558a040 CrossRefGoogle Scholar
  36. Huang C-C, Li H-S, Chen C-H (2008) Effect of surface acidic oxides of activated carbon on adsorption of ammonia. J Hazard Mater 159(2–3):523–527. doi: 10.1016/j.jhazmat.2008.02.051 PubMedCrossRefGoogle Scholar
  37. Jansen RJJ, van Bekkum H (1994) Amination and ammoxidation of activated carbons. Carbon 32(8):1507–1516. doi: 10.1016/0008-6223(94)90146-5 CrossRefGoogle Scholar
  38. Jones TP, Chaloner WG, Kuhlbusch TAG (1997) Proposed biogeological and chemical based terminology for fire-altered plant matter, vol NATOASI Series I, 51. Sedimental Records of Biomass Burning and Global Change. Springer, BerlinGoogle Scholar
  39. Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44(16):6189–6195. doi: 10.1021/es1014423 PubMedCrossRefGoogle Scholar
  40. Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. doi: 10.1021/es9031419 PubMedCrossRefGoogle Scholar
  41. Kuhlbusch TAJ, Crutzen PJ (1995) Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem Cy 9(4):491–501. doi: 10.1029/95gb02742 CrossRefGoogle Scholar
  42. Kwapinski W, Byrne C, Kryachko E, Wolfram P, Adley C, Leahy J, Novotny E, Hayes M (2010) Biochar from biomass and waste. Waste Biomass Valor 1(2):177–189. doi: 10.1007/s12649-010-9024-8 CrossRefGoogle Scholar
  43. Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100(1):178–181. doi: 10.2134/agrojnl2007.0161 CrossRefGoogle Scholar
  44. Lal R (2000) Soil management in the developing countries. Soil Sci 165(1):57–72CrossRefGoogle Scholar
  45. Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108(9):3465–3472. doi: 10.1073/pnas.1100480108 PubMedCrossRefGoogle Scholar
  46. Lammirato C, Miltner A, Kaestner M (2011) Effects of wood char and activated carbon on the hydrolysis of cellobiose by [beta]-glucosidase from Aspergillus niger. Soil Biol Biochem In Press, Uncorrected Proof. doi: 10.1016/j.soilbio.2011.05.021
  47. Le Leuch LM, Bandosz TJ (2007) The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons. Carbon 45(3):568–578. doi: 10.1016/j.carbon.2006.10.016 CrossRefGoogle Scholar
  48. Lefroy JH (1883) Remarks on the chemical analyses of samples of soil from Bermuda. Foreign and Commonwealth Office Collection. Royal Gazette, HamiltonGoogle Scholar
  49. Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387CrossRefGoogle Scholar
  50. Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249(2):343–357CrossRefGoogle Scholar
  51. Lehmann J, Rillig M, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—A review. Soil Biol Biochem In Press, Uncorrected Proof. doi: 10.1016/j.soilbio.2011.04.022
  52. Leon CA, Radovic LR (1994) Chemistry and physics of carbon. Marcel Dekker, New YorkGoogle Scholar
  53. Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333(1–2):117–128. doi: 10.1007/s11104-010-0327-0 CrossRefGoogle Scholar
  54. March J (1992) Advanced organic chemistry, 4th edn. Wiley, New YorkGoogle Scholar
  55. Mattson JA, Mark HB, Malbin MD, Weber WJ, Crittenden JC (1969) Surface chemistry of active carbon: specific adsorption of phenols. J Colloid Interface Sci 31(1):116–130. doi: 10.1016/0021-9797(69)90089-7 CrossRefGoogle Scholar
  56. Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol 95(3):255–257. doi: 10.1016/j.biortech.2004.02.015 PubMedCrossRefGoogle Scholar
  57. Molina-Sabio M, Gonçalves M, Rodríguez-Reinoso F (2011) Oxidation of activated carbon with aqueous solution of sodium dichloroisocyanurate: effect on ammonia adsorption. Microporous Mesoporous Mater 142(2–3):577–584. doi: 10.1016/j.micromeso.2010.12.045 CrossRefGoogle Scholar
  58. Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163(3–4):247–255. doi: 10.1016/j.geoderma.2011.04.021 CrossRefGoogle Scholar
  59. Muse JK, Mitchell CC (1995) Paper mill boiler ash and lime by-products as soil liming materials. Agron J 87(3):432–438. doi: 10.2134/agronj1995.00021962008700030008x CrossRefGoogle Scholar
  60. Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2008) Long-term black carbon dynamics in cultivated soil. Biogeochem 89(3):295–308. doi: 10.1007/s10533-008-9220-9 CrossRefGoogle Scholar
  61. Nocentini C, Certini G, Knicker H, Francioso O, Rumpel C (2010) Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent. Org Geochem 41(7):682–689. doi: 10.1016/j.orggeochem.2010.03.010 CrossRefGoogle Scholar
  62. Novak JM, Busscher WJ (2011) Selection and use of designer biochars to improve characteristics of Southeastern USA Coastal Plain degraded soils. Advanced Biofuels and Byproducts. Springer Science, New YorkGoogle Scholar
  63. Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci 174(2):105–112. doi: 10.1097/SS.0b013e3181981d9a CrossRefGoogle Scholar
  64. Pereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 41(4):811–821. doi: 10.1016/s0008-6223(02)00406-2 CrossRefGoogle Scholar
  65. Pesavento M, Profumo A, Alberti G, Conti F (2003) Adsorption of lead(II) and copper(II) on activated carbon by complexation with surface functional groups. Anal Chim Acta 480(1):171–180. doi: 10.1016/s0003-2670(02)01597-0 CrossRefGoogle Scholar
  66. Petit C, Bandosz TJ (2011) Synthesis, characterization, and ammonia adsorption properties of mesoporous metal–organic framework (MIL(Fe))–graphite oxide composites: exploring the limits of materials fabrication. Adv Funct Mater 21(11):2108–2117. doi: 10.1002/adfm.201002517 CrossRefGoogle Scholar
  67. Petit C, Seredych M, Bandosz TJ (2009) Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J Mater Chem 19(48):9176–9185CrossRefGoogle Scholar
  68. Petit C, Kante K, Bandosz TJ (2010) The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon 48(3):654–667. doi: 10.1016/j.carbon.2009.10.007 CrossRefGoogle Scholar
  69. Pitman RM (2006) Wood ash use in forestry—a review of the environmental impacts. Forestry 79(5):563–588CrossRefGoogle Scholar
  70. Qiu Y, Cheng H, Xu C, Sheng GD (2008) Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Res 42(3):567–574. doi: 10.1016/j.watres.2007.07.051 PubMedCrossRefGoogle Scholar
  71. Qiu Y, Zheng Z, Zhou Z, Sheng GD (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol 100(21):5348–5351. doi: 10.1016/j.biortech.2009.05.054 PubMedCrossRefGoogle Scholar
  72. Rajkovich S (2010) Biochar as an Amendment to Improve Soil Fertility. Research Honors Thesis. Cornell UniversityGoogle Scholar
  73. Rodriguez-Reinoso F, Molina-Sabio M, Munecas MA (1992) Effect of microporosity and oxygen surface groups of activated carbon in the adsorption of molecules of different polarity. J Phys Chem 96(6):2707–2713. doi: 10.1021/j100185a056 CrossRefGoogle Scholar
  74. Russel MS (2009) The chemistry of fireworks, 2nd edn. The Royal Society of Chemistry, CambridgeGoogle Scholar
  75. Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cy 14(3):777–793CrossRefGoogle Scholar
  76. Seredych M, Bandosz TJ (2007) Mechanism of ammonia retention on graphite oxides: role of surface chemistry and structure. J Phys Chem C 111(43):15596–15604. doi: 10.1021/jp0735785 CrossRefGoogle Scholar
  77. Seredych M, Petit C, Tamashausky AV, Bandosz TJ (2009) Role of graphite precursor in the performance of graphite oxides as ammonia adsorbents. Carbon 47(2):445–456. doi: 10.1016/j.carbon.2008.10.020 CrossRefGoogle Scholar
  78. Seredych M, Tamashausky AV, Bandosz TJ (2010) Graphite oxides obtained from porous graphite: the role of surface chemistry and texture in ammonia retention at ambient conditions. Adv Funct Mater 20(10):1670–1679. doi: 10.1002/adfm.201000061 CrossRefGoogle Scholar
  79. Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48(7):516–525. doi: doi:10.1071/SR10058 CrossRefGoogle Scholar
  80. Singoredjo L, Kapteijn F, Moulijn JA, Martín-Martínez J-M, Boehm H-P (1993) Modified activated carbons for the selective catalytic reduction of NO with NH3. Carbon 31(1):213–222. doi: 10.1016/0008-6223(93)90175-a CrossRefGoogle Scholar
  81. Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42(12):2345–2347. doi: 10.1016/j.soilbio.2010.09.013 CrossRefGoogle Scholar
  82. Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1(2):289–303. doi: 10.4155/cmt.10.32 CrossRefGoogle Scholar
  83. Spokas K, Reicosky D (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193Google Scholar
  84. Spokas KA, Baker JM, Reicosky DC (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil 333(1–2):443–452. doi: 10.1007/s11104-010-0359-5 CrossRefGoogle Scholar
  85. Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2011a) Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Envioronmental Quality:Revisions submittedGoogle Scholar
  86. Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, duSaire MG, Ro KS (2011b) Qualitative analysis of volatile organic compounds on biochar. Chemosphere In pressGoogle Scholar
  87. Suehiro J, Zhou G, Hara M (2003) Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. J Phys D: Appl Phys 36(21):L109CrossRefGoogle Scholar
  88. Taghizadeh-Toosi A, Clough T, Sherlock RR, Condron LM (2011) Biochar adsorbed ammonia is bioavailable. Plant Soil:In pressGoogle Scholar
  89. Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere In Press doi: 10.1016/j.chemosphere.2010.11.050
  90. Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1–2):235–246. doi: 10.1007/s11104-009-0050-x CrossRefGoogle Scholar
  91. Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46(3):450–456. doi: 10.1016/j.apsoil.2010.09.002 CrossRefGoogle Scholar
  92. Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53(2):181–188. doi: 10.1111/j.1747-0765.2007.00123.x CrossRefGoogle Scholar
  93. Zamperlini G, Silva M, Vilegas W (1997) Identification of polycyclic aromatic hydrocarbons in sugar cane soot by gas chromatography-mass spectrometry. Chromatographia 46(11):655–663. doi: 10.1007/bf02490527 CrossRefGoogle Scholar
  94. Zhou Z, Shi D, Qiu Y, Sheng GD (2010) Sorptive domains of pine chars as probed by benzene and nitrobenzene. Environ Pollut 158(1):201–206. doi: 10.1016/j.envpol.2009.07.020 PubMedCrossRefGoogle Scholar
  95. Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301. doi: 10.1021/es903140c PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2011

Authors and Affiliations

  • Kurt A. Spokas
    • 1
  • Jeff M. Novak
    • 2
  • Rodney T. Venterea
    • 1
  1. 1.USDA-ARS, Soil and Water Management UnitSt. PaulUSA
  2. 2.USDA-ARS, Coastal Plains Soil, Water, and Plant Research CenterFlorenceUSA

Personalised recommendations