Plant and Soil

, Volume 350, Issue 1–2, pp 179–191 | Cite as

Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula

  • Pilar Castro-Díez
  • Natalia Fierro-Brunnenmeister
  • Noelia González-Muñoz
  • Antonio Gallardo
Regular Article



We assessed the effects of native and exotic tree leaf litter on soil properties in two contrasting scenarios. The native Quercus robur and Pinus pinaster tree species coexist with the aliens Eucalyptus globulus and Acacia dealbata in acid soils of NW Spain. The native trees Fraxinus angustifolia and Ulmus minor coexist with the aliens Ailanthus altissima, Robinia pseudoacacia and Ulmus pumila in eutrophic basic riparian soils in Central Spain.


Four plastic trays per species were filled with homogenized top-soil of the site and covered with leaf litter. Before and after 9 months of incubation, litter mass, soil pH, organic matter, mineral and total N were measured. Available mineral N (NO3-N and NH4+-N) was assessed every 2 months.


Soil biological activity was higher in the basic than in the acid soil. Litter of the exotic trees tended to decompose less than litter of native species, probably due to the presence of secondary metabolites in the former. Soil pH, mineral and total N responded differently to different litter types, irrespective of their exotic or native origin (acid soil), or was similar across litter treatments (basic riparian soil). The similar response of the basic soil to the addition of different litter types may be due to the low contrast of litter quality between the species. E. globulus litter inhibitied soil microbial activity much more than the rest of the studied litter types, leading to a drastic impoverishment of N in soils.


Litter of exotic N-fixing trees (A. dealbata and R. pseudoacacia) did not increase soil N pools because of the inhibition of microbial activity by secondary compounds. Therefore, secondary metabolites of the litter played a major role explaining exotic litter impact on soil properties.


Invasive species Litter decomposition N cycle Soil pH Soil organic matter Soil N content 


  1. Abrams MM, Jarrell WM (1992) Bioavailability index for phosphorus using ion exchange resin impregnated membranes. Soil Sci Am J 56:1532–1537Google Scholar
  2. Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evalutation of processes and patterns. Adv Ecol Res 30:1–67CrossRefGoogle Scholar
  3. Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. In: Moore PD, Chapman SB (eds) Methods in plant ecology, 2nd edn. Blackwell Sci. Pub, Oxford, pp 285–344Google Scholar
  4. Alonso A, González-Muñoz N, Castro-Díez P (2010) Comparison of leaf decomposition and macroinvertebrate colonization between exotic and native trees in a freshwater ecosystem. Ecol Res 25:647–653CrossRefGoogle Scholar
  5. Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau MT (2005) Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Appl 15(4):1263–1272CrossRefGoogle Scholar
  6. Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. J Appl Ecol 44(5):1023–1034CrossRefGoogle Scholar
  7. Baruch Z, Bilbao B (1999) Effects of fire and defoliation on the life history of native and invader C-4 grasses in a Neotropical savanna. Oecologia 119(4):510–520CrossRefGoogle Scholar
  8. Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology 74(7):2085–2097CrossRefGoogle Scholar
  9. Castro-Díez P, González-Muñoz N, Alonso A, Gallardo A, Poorter L (2009) Effects of exotic invasive trees on nitrogen cycling: a case study in Central Spain. Biol Invasion 11:1973–1986CrossRefGoogle Scholar
  10. Chamier AC (1987) Effect of pH on microbial-degradation of leaf litter in seven streams of the English-Lake-District. Oecologia 71(4):491–500CrossRefGoogle Scholar
  11. Corbeels M, O’Connell AM, Grove TS, Mendham DS, Rance SJ (2003) Nitrogen release from eucalypt leaves and legume residues as influenced by their biochemical quality and degree of contact with soil. Plant Soil 250(1):15–28CrossRefGoogle Scholar
  12. Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114CrossRefGoogle Scholar
  13. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cyling processes. Ecosystems 6:503–523CrossRefGoogle Scholar
  14. Ehrenfeld JG, Kourtev P, Huang W (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11:1287–1300CrossRefGoogle Scholar
  15. Eiland F, Klamer M, Lind AM, Leth M, Baath E (2001) Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microb Ecol 41(3):272–280PubMedGoogle Scholar
  16. Field A (2005) Discovering statistics using SPSS. Sage Publications, LondonGoogle Scholar
  17. Finzi AC, Canham CD, Van Breemen N (1998) Canopy tree-soil interactions within temperate forests: species effects on pH and cations. Ecol Appl 8(2):447–454Google Scholar
  18. Follstad Shah JJ, Harner MJ, Tibbets TM (2010) Elaeagnus angustifolia elevates soil inorganic nitrogen pools in riparian ecosystems. Ecosystems 13:46–61CrossRefGoogle Scholar
  19. Gallardo A, Merino J (1992) Nitrogen inmobilization in leaf litter at two Mediterranean ecosystems of SW Spain. Biogeochem 15:213–228CrossRefGoogle Scholar
  20. Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74(1):152–161CrossRefGoogle Scholar
  21. Gallardo A, Parama R (2007) Spatial variability of soil elements in two plant communities of NW Spain. Geoderma 139:199–208CrossRefGoogle Scholar
  22. Gilliam FS, Dick DA (2010) Spatial heterogeneity of soil nutrients and plant species in herb-dominated communities of contrasting land use. Plant Ecol 209(1):83–94CrossRefGoogle Scholar
  23. Godoy O, Castro-Díez P, Van Logtestijn RSP, Cornelissen JHC, Valladares F (2010) Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia 162:781–790PubMedCrossRefGoogle Scholar
  24. Gomez-Aparicio L, Canham CD (2008) Neighborhood models of the effects of invasive tree species on ecosystem processes. Ecol Monogr 78(1):69–86CrossRefGoogle Scholar
  25. Grigulis K, Lavorel S, Davies ID, Dossantos A, Lloret F, Vila M (2005) Landscape-scale positive feedbacks between fire and expansion of the large tussock grass, Ampelodesmos mauritanica in Catalan shrublands. Glob Chang Biol 11(7):1042–1053CrossRefGoogle Scholar
  26. Grotkopp E, Rejmánek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: Phylogenetically independent contrasts of woody angiosperms. Am J Bot 94(4):526–532PubMedCrossRefGoogle Scholar
  27. Hattenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15(6):238–243PubMedCrossRefGoogle Scholar
  28. Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8(9):976–985CrossRefGoogle Scholar
  29. Heisey RM, Heisey TK (2003) Herbicidal effects under field conditions of Ailanthus altissima bark extract, which contains ailanthone. Plant Soil 256(1):85–99CrossRefGoogle Scholar
  30. Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87(9):2288–2297PubMedCrossRefGoogle Scholar
  31. Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162(2):505–513PubMedCrossRefGoogle Scholar
  32. Kittle DL, McGraw JB, Garbutt K (1995) Plant litter decomposition in wetlands receiving acid-mine drainage. J Environ Qual 24(2):301–306CrossRefGoogle Scholar
  33. Kowarik I, Saumel I (2007) Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect Plant Ecol 8(4):207–237CrossRefGoogle Scholar
  34. Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226CrossRefGoogle Scholar
  35. Le Maitre DC, van Wilgen BW, Chapman RA, McKelly DH (1996) Invasive plants and water resources in the Western Cape Province, South Africa: modelling the consequences of a lack of management. J Appl Ecol 33:161–172CrossRefGoogle Scholar
  36. Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond [Biol] 270(1517):775–781CrossRefGoogle Scholar
  37. Ley RE, D’Antonio CM (1998) Exotic grass invasion alters potential rates of N fixation in Hawaiian woodlands. Oecologia 113:179–187CrossRefGoogle Scholar
  38. Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177(3):706–714PubMedCrossRefGoogle Scholar
  39. Mack MC, D’Antonio CM (1999) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198CrossRefGoogle Scholar
  40. Mack MC, D’Antonio CM, Ley RE (2001) Alteration of ecosystem nitrogen dynamics by exotic plants: a case study of C4 grasses in Hawaii. Ecol Appl 11:1323–1335Google Scholar
  41. Mayer PM, Tunnell SJ, Engle DM, Jorgensen EE, Nunn P (2005) Invasive grass alters litter decomposition by influencing macrodetritivores. Ecosystems 8(2):200–209CrossRefGoogle Scholar
  42. Mendham DS, Heagney EC, Corbeels M, O’Connell AM, Grove TS, McMurtrie RE (2004) Soil particulate organic matter effects on nitrogen availability after afforestation with Eucalyptus globulus. Soil Biol Biochem 36(7):1067–1074CrossRefGoogle Scholar
  43. Motavalli PP, Palm CA, Parton WJ, Elliott ET, Frey SD (1995) Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biol Biochem 27(12):1589–1599CrossRefGoogle Scholar
  44. Noe GB, Hupp CR (2005) Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic coastal plain rivers, USA. Ecol Appl 15(4):1178–1190CrossRefGoogle Scholar
  45. Ohte N, Koba K, Yoshikawa K, Sugimoto A, Matsuo N, Kabeya N, Wang LH (2003) Water utilization of natural and planted trees in the semiarid desert of Inner Mongolia, China. Ecol Appl 13(2):337–351CrossRefGoogle Scholar
  46. Olde Venterink H, Vermaat JE, Pronk M, Wiegman F, van der Lee GEM, van den Hoorn MW, Higler L, Verhoeven JTA (2006) Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Appl Veg Sci 9(2):163–174CrossRefGoogle Scholar
  47. Pattison RR, Goldstein G, Ares A (1998) Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117:449–459CrossRefGoogle Scholar
  48. Porta Casanellas J, López-Acevedo Reguerín M, Rodríguez Ochoa R (1982) Técnicas y Experimentos en Edafología. Universitat de LleidaGoogle Scholar
  49. Rothstein DE, Vitousek PM, Simmons BL (2004) An exotic tree alters decomposition and nutrient cycling in a Hawaiian montane forest. Ecosystems 7:805–814CrossRefGoogle Scholar
  50. Rovira P, Vallejo VR (1997) Organic carbon and nitrogen mineralization under Mediterranean climatic conditions: the effects of incubation depth. Soil Biol Biochem 29(9–10):1509–1520CrossRefGoogle Scholar
  51. Sanz Elorza M, Dana Sánchez ED, Sobrino Vesperinas E (2004) Atlas de las plantas alóctonas invasoras en España. Dirección General para la Biodiversidad. Ministerio de Medio Ambiente, MadridGoogle Scholar
  52. Schlesinger WC (1991) Biogeochemistry. Academic, New YorkGoogle Scholar
  53. Soudzilovskaia NA, Onipchenko VG (2005) Experimental investigation of fertilization and irrigation effects on an alpine heath, northwestern Caucasus, Russia. Arct Antarct Alp Res 37(4):602–610CrossRefGoogle Scholar
  54. Stevens CJ, Dupre C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010) Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158(9):2940–2945PubMedCrossRefGoogle Scholar
  55. Stock WD, Wienand KT, Baker AC (1995) Impacts of Invading N2-Fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems - Evidence from soil incubation studies and N-15 natural-abundance values. Oecologia 101(3):375–382CrossRefGoogle Scholar
  56. Subler S, Blair JM, Edwards CA (1995) Using anion-exchange membranes to measure soil nitrate availability and net nitrification. Soil Biol Biochem 27 (7):911–917Google Scholar
  57. Tateno R, Tokuchi N, Yamanaka N, Du S, Otsuki K, Shimamura T, Xue ZD, Wang SQ, Hou QC (2007) Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. For Ecol Manag 241(1–3):84–90CrossRefGoogle Scholar
  58. Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay-rates - a microcosm test. Ecology 70(1):97–104CrossRefGoogle Scholar
  59. Tennesen M (2008) When Juniper and woody plants invade, water may retreat. Science 322:1630–1361PubMedCrossRefGoogle Scholar
  60. Vanderhoeven S, Dassonville N, Meerts P (2005) Increased topsoil mineral nutrient concentrations under exotic invasive plants. Plant Soil 275:169–179CrossRefGoogle Scholar
  61. Vilà M, Tessier M, Suehs CM, Brundu G, Carta L, Galanidis A, Lambdon P, Manca M, Médails F, Moragues E, Traveset A, Roumbis AY, Hulme PE (2006) Local and regional assessment of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J Biogeogr 33(5):853–861CrossRefGoogle Scholar
  62. Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawai’i: plant demography, nutrient fixation, ecosystem effects. Ecol Monogr 59:247–265CrossRefGoogle Scholar
  63. Whalen JK, Sampedro L (2009) Soil ecology and management. CAB International,Google Scholar
  64. Xiong YM, Xia HX, Li ZA, Cai XA, Fu SL (2008) Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant Soil 304(1–2):179–188CrossRefGoogle Scholar
  65. Yelenik SG, Stock WD, Richardson DM (2007) Functional group identity does not predict invader impacts: differential effects of nitrogen-fixing exotic plants on ecosystem function. Biol Invasion 9:117–125CrossRefGoogle Scholar
  66. Yoshitake S, Sasaki A, Uchida M, Funatsu Y, Nakatsubo T (2007) Carbon and nitrogen limitation to microbial respiration and biomass in an acidic solfatara field. Eur J Soil Biol 43(1):1–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Pilar Castro-Díez
    • 1
  • Natalia Fierro-Brunnenmeister
    • 1
  • Noelia González-Muñoz
    • 1
  • Antonio Gallardo
    • 2
  1. 1.Department of EcologyUniversity of AlcaláMadridSpain
  2. 2.Departament of Physical, Chemical and Natural SystemsUniversity of Pablo de OlavideSevillaSpain

Personalised recommendations