Plant and Soil

, Volume 347, Issue 1–2, pp 377–386 | Cite as

Litter dynamics and fine root production in Schizolobium parahyba var. amazonicum plantations and regrowth forest in Eastern Amazon

  • Antonio Kledson Leal Silva
  • Steel Silva Vasconcelos
  • Claudio José Reis de Carvalho
  • Iracema Maria Castro Coimbra Cordeiro
Regular Article

Abstract

Forest plantations and agroforestry systems with Schizolobium parahyba var. amazonicum have greatly expanded in the Brazilian Amazon, generally as an alternative for reforesting degraded areas. To our knowledge there are no reports of above- and below-ground production in these forest systems. We quantified litter and fine root production in 6-yr old Schizolobium-based plantation forests (monospecific: MON, mixture: MIX, and agroforestry system: AFS) and in ~25-yr old regrowth forest (REG) over 8–12 months. We used litter traps and ingrowth cores to quantify litter and fine root production, respectively. Annual litter production was significantly lower in Schizolobium-based plantations (mean ± standard error, MON = 5.92 ± 0.15, MIX = 6.08 ± 0.13, AFS = 6.63 ± 0.13 Mg ha−1 year−1) than in regrowth forest (8.64 ± 0.08 Mg ha−1 year−1). Schizolobium-based plantations showed significantly higher litter stock (MON = 7.7 ± 1.0, MIX = 7.4 ± 0.1 Mg ha−1) than REG (5.9 ± 1.3 Mg ha−1). Total fine root production over an 8-month period was significantly higher in Schizolobium-based plantations (MON = 3.8 ± 0.2, MIX = 3.4 ± 0.2, AFS = 2.7 ± 0.1 Mg ha−1) than in REG (1.1 ± 0.03 Mg ha−1). Six-yr old Schizolobium-based plantations and ~25-yr old regrowth forests showed comparable rates of litter + fine root production, suggesting that young forest plantations may be an interesting alternative to restore degraded areas due to early reestablishment of organic matter cycling under the studied conditions.

Keywords

Amazon Decomposition Litter Fine root Regrowth forest 

References

  1. ABRAF (2010) Anuario estatistico da ABRAF 2010 ano base 2009. Associacao Brasileira de Produtores de Florestas Plantadas, BrasiliaGoogle Scholar
  2. Barlow J, Gardner TA, Ferreira LV, Peres CA (2007) Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. Forest Ecol Manag 247:91–97CrossRefGoogle Scholar
  3. Borchert R, Rivera G, Hagnauer W (2002) Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34(1):27–39Google Scholar
  4. Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32CrossRefGoogle Scholar
  5. Chave J, Navarrete D, Almeida S, Álvarez E, Aragão LEOC, Bonal D, Châtelet P, Silva-Espejo JE, Goret JY, von Hildebrand P, Jiménez E, Patiño S, Peñuela MC, Phillips OL, Stevenson P, Malhi Y (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7(1):43–55. doi:10.5194/bg-7-43-2010 CrossRefGoogle Scholar
  6. Cordeiro IMC (2007) Comportamento de Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby e Ananas comosus var. erectifolius (L. B. Smith) Coppens & Leal sob diferentes sistemas de cultivo no município de Aurora do Pará (PA). Dissertation, Universidade Federal Rural da Amazônia, BelémGoogle Scholar
  7. Cravo MDS, Viégas IDJM, Brasil EC (2007) Recomendacoes de adubacao e calagem para o estado do Para. Embrapa Amazonia Oriental, BelemGoogle Scholar
  8. Cuevas E, Medina E (1986) Nutrient dynamics within Amazonian forest ecosystems I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68:466–472CrossRefGoogle Scholar
  9. Cuevas E, Lugo AE (1998) Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. Forest Ecol Manag 112(3):263–279CrossRefGoogle Scholar
  10. Cuevas E, Brown S, Lugo AE (1991) Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant Soil 135:257–268CrossRefGoogle Scholar
  11. Davidson EA, de Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Saba RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447 (7147):995–998. doi:http://www.nature.com/nature/journal/v447/n7147/suppinfo/nature05900_S1.html Google Scholar
  12. Dias JD (2008) Dinamica do amonio e nitrato em solos consorciados com plantios de parica (Schizolobium amazonicum) em Aurora do Para, Para. Thesis, Universidade Federal do Para BelemGoogle Scholar
  13. Ducke A (1949) Notas sobre a flora neotropica II: as leguminosas da Amazonia brasileira. IAN Boletim Tecnico 18. BelemGoogle Scholar
  14. Embrapa (1997) Manual de metodos de analise de solo, 2nd edn. EMBRAPA-CNPS, Rio de JaneiroGoogle Scholar
  15. Gazel Filho AB, Cordeiro IMCC, Alvarado JR, Santos Filho BGD (2007) Producao de biomassa em quatro procedencias de parica (Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby no estadio de muda. Rev Brasil Bioci 5:1047–1049Google Scholar
  16. Higuchi N, Santos J, Ribeiro RJ, Minette L, Biot Y (1998) Biomassa da parte aerea da vegetacao da floresta tropical umida de terra-firme da Amazonia brasileira. Acta Amazonica 28(2):153–166Google Scholar
  17. Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310(5754):1628–1632. doi:10.1126/science.1111773 PubMedCrossRefGoogle Scholar
  18. Lima TTS, Miranda IS, Vasconcelos SS (2010) Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil. New Phytol. doi:10.1111/j.1469-8137.2010.03299.x
  19. Littell RC, Henry PR, Ammerman CJ (1998) Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76:1216–1231PubMedGoogle Scholar
  20. Lugo AE (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecol Monogr 62(1):1–41CrossRefGoogle Scholar
  21. Luizão FJ, Tapia-Coral S, Gallardo-Ordinola J, Silva GC, Luizão RC, Trujillo-Cabrera L, Wandelli E, Fernandes ECM (2006) Ciclos biogeoquimicos em agroflorestas da Amazonia. In: Gama-Rodrigues ACd, Barros NFd, Gama-Rodrigues EFd et al. (eds) Sistemas agroflorestais: bases cientificas para o desenvolvimento sustentavel. Embrapa Informacao Tecnologica, Brasilia, pp 87–100Google Scholar
  22. Martius C, Höfer H, Garcia MVB, Römbke J, Hanagarth W (2004) Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr Cycl Agroecosyst 68:137–154CrossRefGoogle Scholar
  23. Metcalfe DB, Meir P, Aragao LEOC, Costa ACL, Braga AP, Goncalves PHL, Silva Junior JA, Almeida SS, Dawson LA, Malhi Y, Williams M (2008) The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311:189–199CrossRefGoogle Scholar
  24. Montagnini F, Cusack D, Petit B, Kanninen M (2006) Environmental services of native tree plantations and agroforestry systems in Central America. In: Montagnini F (ed) Environmental services of agroforestry systems. Food Products Press, Binghamton, pp 51–67Google Scholar
  25. Nadelhoffer KJ, Raich J (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73(4):1139–1147CrossRefGoogle Scholar
  26. Nelson BW, Mesquita R, Pereira JLG, Souza SGAD, Batista GT, Couto LB (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecol Manag 117:149–167CrossRefGoogle Scholar
  27. Nepstad D, Moutinho PRS, Markewitz D (2001) The recovery of biomass, nutrient stocks, and deep soil functions in secondary forests. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, pp 139–155Google Scholar
  28. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331CrossRefGoogle Scholar
  29. SAS (2004) SAS/STAT® 9.1 User’s Guide. SAS Institute Inc., CaryGoogle Scholar
  30. Smith CK, Oliveira FDA, Gholz HL, Baima A (2002) Soil carbon stocks after forest conversion to tree plantations in lowland Amazonia, Brazil. Forest Ecol Manag 164:257–263CrossRefGoogle Scholar
  31. Smith K, Gholz HL, Oliveira FDA (1998) Litterfall and nitrogen-use efficiency of plantations and primary forest in the eastern Brazilian Amazon. Forest Ecol Manag 109:209–220CrossRefGoogle Scholar
  32. Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall. Consequences for the planning of agricultural occupation and the protection of primary forests. R Swed Acad Sci 30(7):388–396Google Scholar
  33. Valverde-Barrantes OJ, Raich JW, Russell AE (2007) Fine-root mass, growth and nitrogen content for six tropical tree species. Plant Soil 290:357–370CrossRefGoogle Scholar
  34. Vasconcelos SS, Zarin DJ, Capanu M, Littell R, Davidson EA, Ishida FY, Santos EB, Araújo MM, Aragão DV, Rangel-Vasconcelos LGT, Oliveira FDA, McDowell WH, Carvalho CJRD (2004) Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest. Global Biogeochem Cycles 18:GB2009, doi:2010.1029/2003GB002210
  35. Vitousek PM, Sanford RL, Jr. (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Antonio Kledson Leal Silva
    • 1
  • Steel Silva Vasconcelos
    • 2
  • Claudio José Reis de Carvalho
    • 2
  • Iracema Maria Castro Coimbra Cordeiro
    • 3
  1. 1.Universidade Federal do Para, Programa de Pos-graduacao em Ciencias AmbientaisBelemBrazil
  2. 2.Embrapa Amazonia Oriental, Laboratorio de Ecofisiologia VegetalBelemBrazil
  3. 3.Tramontina Belem S.A.BelemBrazil

Personalised recommendations