Plant and Soil

, Volume 356, Issue 1–2, pp 217–230

Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar

  • Nele Weyens
  • Jana Boulet
  • Dirk Adriaensen
  • Jean-Pierre Timmermans
  • Els Prinsen
  • Sandra Van Oevelen
  • Jan D’Haen
  • Karen Smeets
  • Daniel van der Lelie
  • Safiyh Taghavi
  • Jaco Vangronsveld
Regular Article

Abstract

This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promote growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.

Keywords

plant growth promotion endophyte poplar biomass production food-bioenergy conflict green fluorescent protein 

References

  1. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315CrossRefGoogle Scholar
  2. Asghar HN, Zahir ZA, Arshad M (2004) Screening rhizobacteria for improving the growth, yield and soil content of canola (Brassica napus L.). Australian Journal of Agriculture Research 55:187–194CrossRefGoogle Scholar
  3. Babalola OO, Osir EO, Sanni AI, Odhiambo GD, Bulimo WD (2003) Amplification of 1-amino-cuclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infected soil. Afr J Biotechnol 2:157–160Google Scholar
  4. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588PubMedCrossRefGoogle Scholar
  5. Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Split M, Vangronsveld J (2009) Field note: Hydraulic containment of a BTEX plume using poplar trees. Int J Phytoremediat 11:416–424CrossRefGoogle Scholar
  6. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  7. Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800PubMedCrossRefGoogle Scholar
  8. Beraha L, Wisniewski V, Garber ED (1983) Avirulence and reduced extracellular enzyme activity in Geotrichum candidum. Bot Gaz 144:461–465CrossRefGoogle Scholar
  9. Bergmeyer HU, Gawenn K, Grassl M (1974) Enzymes as biochemical reagents. In: Bergmeyer HU (ed) Methods in Enzymatic Analysis. Academic, NewYork, pp 425–522Google Scholar
  10. Bertagnolli BL, Soglio FKD, Sinclair JB (1996) Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonists, Bacillus megaterium strain B153-2-2 and Trichoderma harzianum isolate Th008. I. Possible correlations with inhibition of growth and biocontrol. Physiol Mol Plant P 48:145–160CrossRefGoogle Scholar
  11. Bloemberg GV, Carvajal MMC (2006) Microbial interactions with plants: a hidden world. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 321–336CrossRefGoogle Scholar
  12. Buyer JS, Leong J (1986) Iron transport mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. J Biol Chem 261:791–794PubMedGoogle Scholar
  13. Cánovas D, Cases I, de Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256PubMedCrossRefGoogle Scholar
  14. Cassman KG, Liska AJ (2007) Food and fuel for all: realistic or foolish? Biofuels Bioprod Bioref 1:18–23CrossRefGoogle Scholar
  15. Coombs JT, Franco CMM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microb 69:4260–4262CrossRefGoogle Scholar
  16. Cunningham J, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58(5):1451–1458PubMedGoogle Scholar
  17. Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Lett 52:153–162CrossRefGoogle Scholar
  18. de Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411CrossRefGoogle Scholar
  19. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333PubMedCrossRefGoogle Scholar
  20. Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12:133–141CrossRefGoogle Scholar
  21. Gao Q, Peng SL, Zhao P, Zeng XP, Cai X, Yu M, Shen WJ, Liu YH (2003) Explanation of vegetation succession in subtropical southern China based on ecophysiological characteristics of plant species. Tree Physiol 23:641–648PubMedCrossRefGoogle Scholar
  22. Germaine K, Keogh E, Borremans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Porteus Moore F, Moore ERB, Campbel CD, Ryan D, Dowling D (2004) Colonisation of poplar trees by gfp expressing endophytes. FEMS Microbiol Ecol 48:109–118PubMedCrossRefGoogle Scholar
  23. Haberl H, Beringer T, Bhattacharya SC, Erb K-H, Hoogwijk M (2010) The global technical potential of bio-energy in 2050 considering sustainable constraints. Current opinion in Environmental Sustainability 2:394–403CrossRefGoogle Scholar
  24. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. P Natl Acad Sci USA 94:2122–2127CrossRefGoogle Scholar
  25. Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923PubMedGoogle Scholar
  26. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field crop res 65:197–209CrossRefGoogle Scholar
  27. James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766CrossRefGoogle Scholar
  28. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266PubMedCrossRefGoogle Scholar
  29. Krechel A, Faupal A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antogonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid and White) Chitwood. Can J Microbiol 48:772–786PubMedCrossRefGoogle Scholar
  30. Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120CrossRefGoogle Scholar
  31. Mahaffee WF, Kloepper JW, Van Vuurde JWL, Van der Wolf JM, Van den Brink M (1997) Endophytic colonization of Phaseolus vulgaris by Pseudomonas fluorescens strain 89B-27 and Enterobacter asburiae strain JM22. In: Ryder MHR, Stevens PM, Bowen GD (eds) Improving plant productivity in rhizosphere bacteria. CSIRO, Melbourne, p 180Google Scholar
  32. Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, van der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207PubMedGoogle Scholar
  33. Mayer AM (1958) Determination of Indole Acetic Acid by the Salkowsky Reaction. Nature 182:1670–1671PubMedCrossRefGoogle Scholar
  34. McCord J, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuperein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  35. Merckx R, van Ginkel JH, Sinnaeve J, Cremers A (1986) Plant induced changes in the rhizosphere of maize and wheat. Plant Soil 96:85–93CrossRefGoogle Scholar
  36. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334PubMedGoogle Scholar
  37. Newman KL, Almeida RPP, Purcell AH, Lindow SE (2003) Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl Environ Microb 69:7319–7327CrossRefGoogle Scholar
  38. O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiology Reviews 56:662–676Google Scholar
  39. Patten C, Glick B (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801PubMedCrossRefGoogle Scholar
  40. Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep 27:1317–1324PubMedCrossRefGoogle Scholar
  41. Porteous Moore F, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell CD, Moore ERB (2006) Endophytic bacterial diversity in Poplar trees growing on a BTEX-contaminated site: The characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556CrossRefGoogle Scholar
  42. Prinsen E, Van Dongen W, Esmans E, Van Onckelen H (1997) HPLC Linked electrospray tandem mass spectrometry: a rapid and reliable method to analyze indole-3-acetic acid metabolism in bacteria. J Mass Spectrom 32:12–22CrossRefGoogle Scholar
  43. Quadt-Hallmann A, Kloepper JW (1996) Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species. Can J Microbiol 42:1144–1154CrossRefGoogle Scholar
  44. Quadt-Hallmann A, Benhamou N, Kloepper JW (1997) Bacterial endophytes in cotton: mechanisms entering the plant. Can J Microbiol 43:577–582CrossRefGoogle Scholar
  45. Ramos-Gonzalez MI, Campos MJ, Ramos JL (2005) Analysis of Pseudomonas putida KT2440 gene expression in maize rhizosphere: in vitro expression technology capture and indentification of root-activated promoters. J Bacteriol 187:4033–4041PubMedCrossRefGoogle Scholar
  46. Redig P, Shaul O, Inzé D, Van Montagu M, Van Onckelen H (1996) Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett 391:175–180PubMedCrossRefGoogle Scholar
  47. Spiertz H (2010) Food production, crops and sustainability: restoring confidence in science and technology. Current opinion in Environmental Sustainability 2:439–443CrossRefGoogle Scholar
  48. Sprent JI, de Faria SM (1988) Mechanisms of infection of plants by nitrogen fixing organisms. Plant Soil 110:157–165CrossRefGoogle Scholar
  49. Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56PubMedCrossRefGoogle Scholar
  50. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from Poplar improves phytoremediation of toluene. Appl Environ Microb 71:8500–8505CrossRefGoogle Scholar
  51. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar. Appl Environ Microb 75:748–757CrossRefGoogle Scholar
  52. Tanimoto E (2007) Regulation of plant growth by plant hormones – Roles for Auxin and Gibberelin. Crit Rev Plant Sci 24:249–265CrossRefGoogle Scholar
  53. van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  54. Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer Series in Statistics. Springer, New YorkGoogle Scholar
  55. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  56. Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago M (ed) Plants and the chemical elements. VCH Verlagsgesellschaft, Germany, pp 149–177CrossRefGoogle Scholar
  57. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009a) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotech 20:248–254PubMedCrossRefGoogle Scholar
  58. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009b) Exploiting plant–microbe partnerships for improving biomass production and remediation. Trends Biotechnol 27:591–598PubMedCrossRefGoogle Scholar
  59. Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Vangronsveld J (2009c) Bacterial diversity associated with English Oak and Common Ash growing on a TCE-contaminated site: characterization of strains with potential to improve phytoremediation. Environ Sci Pollut R 16:830–843CrossRefGoogle Scholar
  60. Weyens N, van der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J (2009d) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418PubMedCrossRefGoogle Scholar
  61. Weyens N, Truyens S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Potential of Pseudomonas putida W619-TCE to reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nele Weyens
    • 1
  • Jana Boulet
    • 1
  • Dirk Adriaensen
    • 2
  • Jean-Pierre Timmermans
    • 2
  • Els Prinsen
    • 3
  • Sandra Van Oevelen
    • 3
  • Jan D’Haen
    • 4
  • Karen Smeets
    • 5
  • Daniel van der Lelie
    • 6
  • Safiyh Taghavi
    • 7
  • Jaco Vangronsveld
    • 1
  1. 1.Environmental BiologyHasselt UniversityDiepenbeekBelgium
  2. 2.Laboratory of Cell Biology & Histology, Department of Veterinary SciencesAntwerp UniversityAntwerpBelgium
  3. 3.Department of Biology, GroenenborgercampusAntwerp UniversityAntwerpBelgium
  4. 4.Institute for Materials ResearchHasselt UniversityDiepenbeekBelgium
  5. 5.Biodiversity, Phylogeny & Population StudiesHasselt UniversityDiepenbeekBelgium
  6. 6.Research Triangle Institute (RTI)Research Triangle ParkUSA
  7. 7.Brookhaven National Laboratory (BNL), Biology DepartmentUptonUSA

Personalised recommendations