Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A tool to model 3D coarse-root development with annual resolution

Abstract

Dynamic root-development models are indispensable for biomechanical and biomass allocation studies, and also play an important role in understanding slope stability. There are few root-development models in the literature, and there is a specific lack of dynamic models. Therefore, the aim of this study is to develop a 3D growth-development model for coarse roots, which is species independent, as long as annual rings are formed. In order to implement this model, the objectives are (I) to interpolate annual growth layers, and (II) to evaluate the interpolations and annual volume computations. The model developed is a combination of 3D laser scans and 2D tree-ring data. A FARO laser ScanArm is used to acquire the coarse-root structure. A MATLAB program then integrates the ring-width measurements into the 3D model. A weighted interpolation algorithm is used to compute cross sections at any point within the model to obtain growth layers. The algorithm considers both the root structure and the ring-width data. The model reconstructed ring profiles with a mean absolute error for mean ring chronologies of <9% and for single radii of <20%. The interpolation accuracy was dependent on the number of input sections and root curvature. Total volume computations deviated by 3.5–6.6% from the reference model. A new robust root-modelling tool was developed which allows for annual volume computations and sophisticated root-development analyses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

MAE:

Mean absolute error

MAPE:

Mean absolute percentage error

MC:

Mean ring chronologies

3D:

3-dimensional

2D:

2-dimensional

References

  1. Bert D, Danjon F (2006) Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For Ecol Manag 222:279–295. doi:10.1016/j.foreco.2005.10.030

  2. Brunner I, Godbold DL (2007) Tree roots in a changing world. J For Res 12:78–82. doi:10.1007/s10310-006-0261-4

  3. Cook ER, Kairiukstis A (eds) (1990) Methods of dendrochronolgy—applications in the environmental science. Kluwer, Dordrecht

  4. Danjon F, Reubens B (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 303:1–34. doi:10.1007/s11104-007-9470-7

  5. Danjon F, Bert D, Godin C, Trichet P (1999) Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant Soil 217:49–63. doi:10.1023/A:1004686119796

  6. Drexhage M, Gruber F (1999) Above- and below-stump relationships for Picea Abies: estimating root system biomass from breast-height diameter. Scand J For Res 14:328–333. doi:10.1080/02827589950152647

  7. Dupuy L, Fourcaud T, Lac P, Stokes A (2007) A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture. Am J Bot 94:1506–1514

  8. FARO Technologies Inc., 2010. http://www.faro.com/

  9. Genet H, Bréda N, Durfrêne E (2009) Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol 30:177–192. doi:10.1093/treephys/tpp105

  10. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 45:289–292. doi:10.1038/nature06591

  11. Henderson R, Ford ED, Renshaw E, Deans JD (1983) Morphology of the structural root system of sitka spruce 2. Computer simulation of rooting pattern. Forestry 56: 121–135

  12. Jourdan C, Rey H (1997) Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant Soil 189:33–48. doi:10.1023/A:1004290024473

  13. King JS, Giardina CP, Pregitzer KS, Friend AL (2007) Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Can J For Res 37:93–102. doi:10.1139/X06-217

  14. Lecompte F, Ozier-Lafontaine H, Pagès L (2001) The relationships between static and dynamic variables in the description of root growth. Consequences for field interpretation of rooting variability. Plant Soil 236:19–31. doi:10.1023/A:1011924529885

  15. Le Roux Y, Pagès L (1994) Développement et polymorphisme racinaires chez de jeunes semis d’hévéa (Hevea brasiliensis). Can J Bot 72:924–932

  16. Lichti D, Gordon S, Tipdecho T (2005) Error models and propagation in directly georeferenced terrestrial laser scanner networks. J Surv Eng ASCE 131(4):135–142. doi:10.1061/(ASCE)0733-9453(2005)131:4(135)

  17. Oppelt A, Kurth W, Dzierzon H, Jentschke G, Godbold D (2000) Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana. Ann For Sci 57:463–475. doi:10.1051/forest:2000135

  18. Pagès L, Aries F (1988) SARAH: modèle de simulation de la croissance, du développement et de architecture des systèmes racinaires. Agronomie 8:889–896

  19. Pagès L, Bengough AG (1997) Modelling minirhizotron observations to test experimental procedures. Plant Soil 189:81–89. doi:10.1023/A:1004288430467

  20. Pagès L, Vercambre G, Drouet JL, Lecompte F, Collet C, Le Bot J (2004) Root Typ: a generic model to depict and analyse the root system architecture. Plant Soil 258:103–119. doi:10.1023/B:PLSO.0000016540.47134.03

  21. Papula L (2008) Mathematik für Ingenieure und Naturwissenschaftler (Band 1). Vieweg + Teubner Verlag, Wiesbaden

  22. Pearson JA, Knight DH, Fahey TJ (1987) Biomass and nutrient accumulation during stand development in Wyoming Lodgepole pine forests. Ecology 68:1966–1973. doi:10.2307/1939887

  23. Pradal C, Boudon F, Nouguier C, Chopard J, Godin C (2009) PlantGL: a python-based geometric library for 3D plant modelling at different scales. Graph Models 71:1–21. doi:10.1016/j.gmod.2008.10.001

  24. Rasse DP, Longdoz B, Ceulemans R (2001) TRAP: a modelling approach to below-ground carbon allocation in temperate forests. Plant Soil 229:281–293. doi:10.1023/A:1004832119820

  25. Regent Instruments Inc. (2004) WinDENDRO: tree-ring, stem, wood density analysis and measurement, Quebec City, Canada

  26. Reubens B, Poesen J, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees 21:385–402. doi:10.1007/s00468-007-0132-4

  27. Santini S, Wagner B (2010) RootLAB: a matlab framework for the modeling of tree roots. Technical Report No. 696, Department of Computer Science, ETH Zurich, Zurich, Switzerland

  28. Soethe N, Lehmann J, Engels C (2007) Root tapering between branching points should be included in fractal root system analysis. Ecol Model 207:363–366. doi:10.1016/j.ecolmodel.2007.05.007

  29. Tobin B, Čermák J, Chiatante D, Danjon F, Di Iorio A, Dupuy L, Eshel A, Jourdan C, Kalliokoski LR, Nadezhdina N, Nicoll B, Pagès L, Silva J, Spanos I (2007) Towards developmental modelling of tree root systems. Plant Biosyst 141:481–501. doi:10.1080/11263500701626283

  30. Van Noordwijk M, Spek LY, Dewilligen P (1994) Proximal root diameter as predictor of total root size for fractal branching models.1.Theory. Plant Soil 164:107–117. doi:10.1007/BF00010116

  31. Vercambre G, Pages L, Doussan C, Habib R (2003) Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach. Plant Soil 251:1–11. doi:10.1023/A:1022961513239

  32. Wagner B, Gärtner H, Ingensand H, Santini S (2010) Incorporating 2D tree-ring data in 3D laser scans of coarse-root systems. Plant Soil 334:175–187. doi:10.1007/s11104-010-0370-x

  33. Wagner B, Santini S, Gärtner H, Ingensand H (2011) Cross-sectional interpolation of annual rings within a 3D root model. Dendrochronologia. doi:10.1016/j.dendro.2010.12.003

  34. Zianis D, Muukkonen P, Mäkipää R (2005) Biomass and stem volume equations for tree species in Europe. Silva Fennica—Monographs no. 4, 63 pp

  35. Zu Castell W, Schrödl S, Seifert T (2005) Volume interpolation of CT images from tree trunks. Plant Biol 7:737–744. doi:10.1055/s-2005-872817

Download references

Acknowledgements

The authors wish to thank the Swiss National Science Foundation (SNF) for funding the project (No.: 200021-113450). Furthermore, the authors are grateful to Dr. J. Grießinger for helpful comments on the final version of the manuscript.

Author information

Correspondence to Bettina Wagner.

Additional information

Responsible Editor: Alexia Stokes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wagner, B., Santini, S., Ingensand, H. et al. A tool to model 3D coarse-root development with annual resolution. Plant Soil 346, 79–96 (2011). https://doi.org/10.1007/s11104-011-0797-8

Download citation

Keywords

  • Allocation
  • Laser scanning
  • Root growth
  • Tree rings
  • Volume