Plant and Soil

, Volume 344, Issue 1–2, pp 99–110

Using hydrogel and clay to improve the water status of seedlings for dryland restoration

  • Esteban Chirino
  • Alberto Vilagrosa
  • V. Ramón Vallejo
Regular Article

Abstract

In dryland ecosystems, post-transplant water stress produces high seedling mortality after the first summer following outplanting. Our aim was to assess the effects of clay and hydrogel, both on the water holding capacity of the growing media and on various morphological and physiological characteristics of Quercus suber seedlings in the nursery and, subsequently, during the first 2 years in the field. Quercus suber L. seedlings were grown in four types of growing media: CS (Control growing media, standard mixture of limed peat and coconut peat, 1:1 v/v ratio), SC-10 (CS mixed with sepiolite clay at 10% v/v) and HS (CS mixed with hydrogel Stockosorb® K-400 at two doses, 0.7 and 1.5% w/w). HS-1.5 showed the best results, increasing the water holding capacity of the root plug, improving seedling water status and increasing seedling survival in the field. SC-10 showed an intermediate effect on seedling response in the field. Mixing hydrogel with a peat-based growing medium to form root plugs is a suitable technique for cultivating species to be planted in areas with a strong water deficit. This technique reduces post-transplant water stress in seedlings during their first months in the field and contributes to improve forest-restoration methods in dryland ecosystems.

Keywords

Quercus suber Plant stock quality Substrate Water availability Carbon isotope composition 

Abbreviations

CS

Control growing media

SC-10

CS growing media mixed with sepiolite clay at 10% v/v

HS-0.7

CS growing media mixed with hydrogel at 0.7 w/w

HS-1.5

CS growing media mixed with hydrogel at 1.5% w/w

Hs

Shoot height

RCD

Root collar diameter

SI

Slenderness index

DWS

Shoot dry weight

DWR

Root dry weight

DWR/DWS

Root/shoot ratio

SDW

Seedling dry weight

DWR/SDW

Root dry weight/seedling dry weight ratio

Ψpd

Predawn xylem water potential

VWC

Volumetric water content

δ13C

Carbon isotope composition

Δleaf

Carbon isotope discrimination

PDB

Pee Dee Belemnite Standard

gs

Stomatal conductance

GLM

General Lineal Model

References

  1. Akhter J, Mahmood K, Malik KA, Mardan A, Ahmad M, Iqbal MM (2004) Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedlings growth of barley, wheat and chickpea. Plant Soil Environ 50:463–469Google Scholar
  2. Al-Humaid AI, Moftah AE (2007) Effects of hydrophilic polymer on the survival of buttonwood seedlings grown under drought stress. J Plant Nutr 30:53–66. doi:10.1080/01904160601054973 CrossRefGoogle Scholar
  3. Alvarez A (1984) Sepiolite: properties and uses. In: Singer A, Galan E (eds) Palygorskite-Sepiolite: occurrences, genesis and uses, vol 37. Elsevier Science Publisher, Amsterdam, pp 253–287Google Scholar
  4. American Soil Technologies Inc. (2010) Agricultural technical use guide for stockosorb® and stockosorb® F. In Products & Services Agriculture. Stockosorb® http://www.americansoiltech.com/products_and_services/agriculture.asp. Accessed 03 august 2010
  5. Apostol KG, Jacobs DF, Dumroese RK (2009) Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip. Plant Soil 315:229–240. doi:10.1007/s11104-08-9746-6 CrossRefGoogle Scholar
  6. Arbona V, Iglesias DJ, Jacas J, Primo-Millo E, Talon M, Gómez-Cárdenas A (2005) Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 270:73–82. doi:10.1007/s11104-004-1160-0 CrossRefGoogle Scholar
  7. Aronson J, Pereira JS, Pausas J (2009) Preface. In: Aronson J, Pereira JS, Pausas J (eds) Cork Oak Woodlands in transition: ecology, management, and restoration of an ancient mediterranean ecosystem. Island Press, Washington DC, pp xv–xviiGoogle Scholar
  8. Bouranis DL, Theodoropoulus AG, Drossopoulus JB (1995) Designing synthetic polymers as soil conditioners. Commun Soil Sci Plant Anal 26:1455–1480CrossRefGoogle Scholar
  9. Buchmann N, Kao WT, Ehleringer J (1997) Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forest in Utah, United States. Oecologia 110:109–119CrossRefGoogle Scholar
  10. Carrasco MS, Rad JC, González-Carcedo S (1995) Immobilization of alkaline phosphatase by sorption on Na-Sepiolite. Bioresour Technol 51:175–181CrossRefGoogle Scholar
  11. Chatzoudis GK, Rigas F (1999) Soil salts reduce hydration of polymeric gels and affect moisture characteristics of soil. Commun Soil Sci Plant Anal 30:2465–2474CrossRefGoogle Scholar
  12. Chen S, Zommorodi M, Fritz E, Wang S, Hüttermann A (2004) Hydrogel modified uptake of salt ions and calcium in Populus euphratica under saline conditions. Trees 18:175–183. doi:10.1007/s00468-003-0267-x Google Scholar
  13. Chirino E, Vilagrosa A, Hernández EI, Matos A, Vallejo VR (2008) Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. For Ecol Manag 256:779–785. doi:10.1016/j.foreco.200805035 CrossRefGoogle Scholar
  14. Chirino E, Vilagrosa A, Cortina J, Valdecantos A, Fuentes D, Trubat R, Luis VC, Puértolas J, Bautista S, Baeza J, Peñuelas JL, Vallejo VR (2009) Ecological restoration in degraded drylands: the need to improve the seedling quality and site conditions in the field. In: Grossberg SP (ed) Forest management. Nova Publisher, New York, pp 85–158Google Scholar
  15. Chong C, Lumis GR (2000) Mixtures of paper mill sludge, wood chips, bark, and peat in substrates for pot-in-pot shade tree production. Can J Plant Sci 80:669–675CrossRefGoogle Scholar
  16. Cortina J, Peñuelas JL, Puertolas J, Savé R, Vilagrosa A (2006) Calidad de planta forestal para la restauración en ambientes mediterráneos: Estado actual del conocimiento. Ministerio de Medio Ambiente, MadridGoogle Scholar
  17. Damesin C, Rambal S, Joffre R (1997) Between-tree variations in leaf δ13C of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability. Oecologia 111:26–35CrossRefGoogle Scholar
  18. Di Castri F (1973) Climatographical comparisons between Chile and the western coast of North America. In: Di Castri F, Mooney HA (eds) Mediterranean type-ecosystems. Springer, Berlin, pp 21–36Google Scholar
  19. Donat R (2009) The removal of uranium (VI) from aqueous solutions onto natural sepiolite. J Chem Thermodyn 41:829–835. doi:10.1016/j.jct.2009.01.009 CrossRefGoogle Scholar
  20. Dubey A, Chandra A (2008) Effect of water stress on carbon isotope discrimination and its relationship with transpiration efficiency and specific leaf area in Cenchrus species. J Environ Biol 29:371–376PubMedGoogle Scholar
  21. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotopic discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  22. Francis ML, Fey MV, Prinsloo HP, Ellis F, Mills AJ, Medinski TV (2007) Soils of Namaqualand: compensations for aridity. J Arid Environ 70:588–603. doi:10.1016/j.jaridenv.2006.12.028 CrossRefGoogle Scholar
  23. Frantz JM, Locke JC, Pitchay DS, Krause CR (2005) Actual performance versus theoretical advantages of polyacrylamide hydrogel throughout bedding plant production. HortScience 40(7):2040–2046Google Scholar
  24. Goveiras A, Freitas H (2008) Modulation of leaf attributes and water use efficiency in Quercus suber along a rainfall gradient. Trees Struct Funct. doi:1010007/s00468-008-0274-z Google Scholar
  25. Günes T (2007) Effect of polymer on seedlings survival and growth of transplanted tomato under water stress. Asian J Chem 19(4):3208–3214Google Scholar
  26. Hüttermann A, Zommorodi M, Reise K (1999) Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought. Soil Tillage Res 50:295–304CrossRefGoogle Scholar
  27. IPCC (2007) Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo de redacción principal: Pachauri RK y Reisinger A (directores de la publicación)]. IPCC, Ginebra, Suiza, 104 págs. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_sp.pdf. Accessed 03 August 2010
  28. Jobin P, Caron J, Bernier PY, Dansereau B (2004) Impact of two hydrophilic acrylic-based polymers on the physical properties of three substrates and the growth of Petunia xhybrida ‘Brilliant Pink’. J Am Soc Hortic Sci 129(3):449–457Google Scholar
  29. Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San DiegoGoogle Scholar
  30. Leavitt S (1993) Seasonal carbon-13 carbon-12 changes in tree rings species and site coherence and a possible drought influence. Can J For Res 23:210–218CrossRefGoogle Scholar
  31. Mañas P, Castro E, De las Heras J (2008) Quality of maritime pine (Pinus pinaster Ait) seedlings using waste materials as nursery growing media. New For 37:295–311. doi:10.1007/s11056-008-9125-4 CrossRefGoogle Scholar
  32. Mangold JM, Sheley RL (2007) Effects of soil texture, watering frequency, and a hydrogel on the emergence and survival of coated versus uncoated crested wheatgrass seeds. Ecol Restor 25(1):6–11. doi:10.3368/er.25.1.6 CrossRefGoogle Scholar
  33. Marfà O, Lemaire F, Cáceres R, Giuffrida F, Guérin V (2002) Relationships between growing media fertility, percolate composition and fertigation strategy in peat-substitute substrates used for growing ornamental shrubs. Sci Hortic 94:309–321CrossRefGoogle Scholar
  34. Marianthi T (2006) Kenaf (Hibiscus cannabinus L.) core and rice hulls as components of container media for growing Pinus halepensis M. seedlings. Bioresour Technol 97:1631–1639. doi:10.1013/j.biortech.200507.027 PubMedCrossRefGoogle Scholar
  35. Ochoa J, Valdés R, González A, López J, Conesa E, Franco JA, Fernández JA, Bañón S (2009) Effects of type of plug and the growing media on evapotranspiration and growth of potted carnations. Acta Hort (ISHS) 843:367–372. http://www.actahort.org/books/843/843_49.htm
  36. Owen JJS, Warren SL, Bilderback TT, Albano J, Cassel KD (2008) Physical properties of pine bark substrate amended with industrial mineral aggregate. Acta Hortic 779:131–138Google Scholar
  37. Pérez Cueva AJ (1994) Atlas Climático de la Comunidad Valenciana. Consellería d’ Obres Publiques, Urbanisme i Transports, Generalitat Valenciana, Valencia, pp 168–183Google Scholar
  38. Pérez-Devesa M, Cortina J, Vilagrosa A, Vallejo R (2008) Shrubland management to promote Quercus suber L. establishment. For Ecol Manag 255:374–382CrossRefGoogle Scholar
  39. Sánchez A, Cadahia C, Eymar E, Masaguer A (2000) Study of conifer nitrogen nutrition using hydroponic cultures: applications to fertigation systems. J Plant Nutr 23(7):1007–1024. doi:10.1080/01904160009382077 CrossRefGoogle Scholar
  40. Sarvaš M (2003) Effect of desiccation on the root system of Norway apruce (Picea abies [L.] Karst.) seedlings and a possibility of using hydrogel Stockosorb® for its protection. J For Sci 49(11):531–536Google Scholar
  41. Sarvaš M, Pavlenda P, Takáčová E (2007) Effect of hydrogel application on survival and growth of pine seedlings in reclamations. J For Sci 53(5):204–209Google Scholar
  42. Thomas DS (2008) Hydrogel applied to the root plug of subtropical eucalypt seedlings halves transplant death following planting. For Ecol Manag 255:1305–1314. doi:10.1016/j.foreco.2007.10.035 CrossRefGoogle Scholar
  43. Trubat R, Cortina J, Vilagrosa A (2010) Nursery fertilization affects seedling traits but not field performance in Quercus suber L. J Arid Environ 74:491–497CrossRefGoogle Scholar
  44. Vallejo VR, Alloza JA (1998) The restoration of burned lands: the case of eastern Spain. In: Moreno JM (ed) Large forest fires. Backhuys Publishers, Lieden, pp 91–108Google Scholar
  45. Vallejo VR, Aronson J, Pausas J, Cortina J (2006) Restoration of Mediterranean woodlands. In: Van Andel J, Aronson J (eds) Restoration ecology. The new frontier. Blackwell Publication, Oxford, pp 193–207Google Scholar
  46. Viero PWM, Little KM, Oscroft DG (2000) The effect of a soil-amended hydrogel on the establishment of a Eucalyptus grandis x E. camaldulensis clone grown on the sandy soils of Zululand. Southern Afr For J 188:21–28Google Scholar
  47. Viero PWM, Chiswell KEA, Theron JM (2002) The effect of a soil-amended hydrogel on the establishment of a Eucalyptus grandis clone on a sandy clay loam soil in Zululand during winter. Southern Afr For J 193:65–75Google Scholar
  48. Vilagrosa A, Seva JP, Valdecantos A, Cortina J, Alloza JA, Serrasolsas I, Diego V, Abril M, Ferran A, Bellot J, Vallejo VR (1997) Plantaciones para la restauración forestal en la Comunidad Valenciana. In: Vallejo VR (ed) La restauración de la cubierta vegetal en la Comunidad Valenciana. Fundación Centro de Estudios Ambientales del Mediterráneo, Valencia, pp 435–548Google Scholar
  49. Wittmer M, Auerswald K, Tungalag R, Bai YF, Schäufele R, Bai CH, Schnyder H (2008) Carbon isotope discrimination of C3 vegetation in Central Asian Grassland as related to long-term and short-term precipitation patterns. Biogeosciences Discuss 5:903–935CrossRefGoogle Scholar
  50. Yang XH, Hu ZO, Gao AL, Wei XF (2006) Remediation of attapulgite on copper contaminated soil. Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban) Journal of Liaoning Technical University (Natural Science Edition) 25:629–631Google Scholar
  51. Yu S, Zinati GM (2006) Physical and chemical changes in container media in response to bark substitution for peat. Compost Sci Util 14:222–230Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Esteban Chirino
    • 1
    • 2
  • Alberto Vilagrosa
    • 1
    • 3
  • V. Ramón Vallejo
    • 1
    • 3
  1. 1.CEAM - Departament of EcologyUniversity of AlicanteAlicanteSpain
  2. 2.Forest Restoration GroupMediterranean Center for Environmental Studies (Foundation CEAM)AlicanteSpain
  3. 3.Mediterranean Center for Environmental Studies (Foundation CEAM)AlicanteSpain

Personalised recommendations