Advertisement

Plant and Soil

, Volume 341, Issue 1–2, pp 333–348 | Cite as

N2 fixation and performance of 12 legume species in a 6-year grassland biodiversity experiment

  • Christiane Roscher
  • Susanne Thein
  • Alexandra Weigelt
  • Vicky M. Temperton
  • Nina Buchmann
  • Ernst-Detlef Schulze
Regular Article

Abstract

Highly variable effects of legumes have been observed in biodiversity experiments, but little is known about plant diversity effects on N2 fixation of legume species. We used the 15N natural abundance method in a non-fertilized regularly mown 6-year biodiversity experiment (Jena Experiment) to quantify N2 fixation of 12 legume species. The proportion of legume N derived from the atmosphere (%Ndfa) differed significantly among legume species. %Ndfa values were lower in 2004 after setting-up the experiment (73 ± 20) than in the later years (2006: 80 ± 16; 2008: 78 ± 12). Increasing species richness had positive effects on %Ndfa in 2004 and 2006, but not in 2008. High biomass production of legumes in 2004 and 2006 declined to lower levels in 2008. In 2006, legume positioning within the canopy best explained variation in %Ndfa values indicating a lower reliance of tall legumes on N2 fixation. In 2008, larger %Ndfa values of legumes were related to lower leaf P concentrations suggesting that the availability of phosphorus limited growth of legumes. In summary, diversity effects on N2 fixation depend on legume species identity, their ability to compete for soil nutrients and light and may vary temporally in response to changing resource availability.

Keywords

Biodiversity Jena Experiment Legumes 15N natural abundance N2 fixation Phosphorus 

Notes

Acknowledgements

The Jena Experiment is funded by the German Science Foundation (FOR 456) with support by the University of Jena and the Max Planck Institute for Biogeochemistry and is coordinated by W.W. Weisser. We thank U. Gerighausen, U. Wehmeier and S. Hengelhaupt for technical assistance and all of the people who assisted in maintaining the experiment and harvesting biomass. We acknowledge H. Geilmann, I. Hilke and M. Räßler for stable isotope and elemental analyses.

References

  1. Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and pattern. Adv Ecol Res 30:1–67CrossRefGoogle Scholar
  2. Amarger N, Mariotti A, Mariotti F, Durr JC, Bourguignon C, Lagacherie B (1979) Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in 15N natural abundance. Plant Soil 52:269–280CrossRefGoogle Scholar
  3. Bordeleau LM, Prévost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115–125CrossRefGoogle Scholar
  4. Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372CrossRefGoogle Scholar
  5. Carlsson G, Palmborg C, Huss-Danell K (2006) Discrimination against 15N in three N2-fixing Trifolium species as influenced by Rhizobium strain and plant age. Acta Agric Scand 56:31–38Google Scholar
  6. Carlsson G, Palmborg C, Jumpponen A, Scherer-Lorenzen M, Högberg P, Huss-Danell K (2009) N2 fixation in three perennial Trifolium species in experimental grasslands of varied plant species richness and composition. Plant Ecol 205:87–104CrossRefGoogle Scholar
  7. Crews TE (1993) Phosphorus regulation of nitrogen fixation in a traditional Mexican agroecosystem. Biogeochemistry 21:141–166CrossRefGoogle Scholar
  8. Ellenberg H (1988) Vegetation ecology of Central Europe. Cambridge Univ Press, CambridgeGoogle Scholar
  9. Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322CrossRefGoogle Scholar
  10. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  11. Gylfadóttir T, Helgadóttir A, Høgh-Jensen H (2007) Consequences of including adapted white clover in northern European grassland: transfer and deposition of nitrogen. Plant Soil 297:93–104CrossRefGoogle Scholar
  12. Habekost M (2008) Influence of plant diversity on soil organic carbon storage and microbial transformation of organic carbon in soil. Dissertation. Univ JenaGoogle Scholar
  13. Hansen JP, Vinther FP (2001) Spatial variability of symbiotic N2 fixation in grass-white clover pastures estimated by the 15N isotope dilution method and the natural 15N abundance method. Plant Soil 230:257–266CrossRefGoogle Scholar
  14. Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspect Plant Ecol Evol Syst 1:92–120CrossRefGoogle Scholar
  15. Hille Ris Lambers J, Harpole WS, Tilman D, Knops J, Reich PB (2004) Mechanisms responsible for the positive diversity-productivity relationship in Minnesota grasslands. Ecol Lett 7:661–668CrossRefGoogle Scholar
  16. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  17. Høgh-Jensen H, Schjoerring JK (1994) Measurement of biological dinitrogen fixation in grassland: comparison of the enriched 15N dilution and the 15N abundance methods at different nitrogen application rates and defoliation frequencies. Plant Soil 166:153–163CrossRefGoogle Scholar
  18. Høgh-Jensen H, Schjoerring JK (2000) Below-ground nitrogen transfer between different grassland species: direct quantification by 15N leaf feeding compared with indirect diluation of soil 15N. Plant Soil 227:171–183CrossRefGoogle Scholar
  19. Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305CrossRefGoogle Scholar
  20. Huss-Danell K, Chaia E (2005) Use of different plant parts to study N2 fixation with the 15N techniques in field-grown red clover (Trifolium pratense). Physiol Plant 125:21–30CrossRefGoogle Scholar
  21. Huss-Danell K, Chaia E, Carlsson G (2007) N2 fixation and nitrogen allocation to above and below ground plant parts in red clover-grasslands. Plant Soil 299:215–226CrossRefGoogle Scholar
  22. Kerley SJ, Jarvis SC (1999) The use of nitrogen-15 natural abundance in white clover (Trifolium repens L.) to determine nitrogen fixation under different management practices. Biol Fertil Soils 29:437–440CrossRefGoogle Scholar
  23. Kluge G, Müller-Westermeier G (2000) Das Klima ausgewählter Orte der Bundesrepublik Deutschland: Jena. Ber Dtsch Wetterdienstes 213:1–290Google Scholar
  24. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450CrossRefGoogle Scholar
  25. Ledgard SF (1989) Nutrition, moisture and rhizobial strain influence isotopic fractionation during N2 fixation in pasture legumes. Soil Biol Biochem 21:65–68CrossRefGoogle Scholar
  26. Ledgard SF, Steele KW (1992) Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 141:137–153CrossRefGoogle Scholar
  27. Loiseau P, Soussana J-F, Louault F, Delpy R (2001) Soil N contributes to the oscillations of the white clover content in mixed swards of perennial ryegrass under conditions that simulate grazing over 5 years. Grass Forage Sci 56:205–217CrossRefGoogle Scholar
  28. Lorentzen S, Roscher C, Schumacher J, Schulze E-D, Schmid B (2008) Species richness and identity affect the use of aboveground space in experimental grasslands. Perspect Plant Ecol Evol Syst 10:73–87CrossRefGoogle Scholar
  29. Marquard E, Weigelt A, Temperton VM, Roscher C, Schumacher J, Buchmann N, Fischer M, Weisser WW, Schmid B (2009) Plant species richness and functional composition drive overyielding in a 6-year grassland experiment. Ecology 90:3290–3302CrossRefPubMedGoogle Scholar
  30. Mulder CPH, Jumpponen A, Högberg P, Huss-Danell K (2002) How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia 133:412–421CrossRefGoogle Scholar
  31. Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Connolly J, Lüscher A (2009) Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J Appl Ecol 46:683–691CrossRefGoogle Scholar
  32. Oelmann Y, Kreutziger Y, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze E-D, Weisser WW, Wilcke W (2007a) Nitrogen and phosphorus budgets in experimental grasslands of variable diversity. J Environ Qual 36:396–407CrossRefPubMedGoogle Scholar
  33. Oelmann Y, Wilcke W, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze E-D, Weisser WW (2007b) Soil and plant nitrogen pools as related to plant diversity in an experimental grassland. Soil Sci Soc Am J 71:720–729CrossRefGoogle Scholar
  34. Palmborg C, Scherer-Lorenzen M, Jumpponen A, Carlsson G, Huss-Danell K, Högberg P (2005) Inorganic soil nitrogen under grassland plant communities of different species composition and diversity. Oikos 110:271–281CrossRefGoogle Scholar
  35. Pate JS (1986) Economy of symbiotic N fixation. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge Univ Press, Cambridge, pp 299–325Google Scholar
  36. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer, New YorkCrossRefGoogle Scholar
  37. Roscher C, Schumacher J, Baade J, Wilcke W, Gleixner G, Weisser WW, Schmid B, Schulze E-D (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121CrossRefGoogle Scholar
  38. Roscher C, Schumacher J, Weisser WW, Schulze E-D (2008a) Genetic identity affects species performance in grasslands of different plant diversity: an experiment with Lolium perenne cultivars. Ann Bot 102:113–125CrossRefPubMedGoogle Scholar
  39. Roscher C, Thein S, Schmid B, Scherer-Lorenzen M (2008b) Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between 2 years. J Ecol 96:477–488CrossRefGoogle Scholar
  40. Roscher C, Schmid B, Schulze E-D (2009) Non-random recruitment of invader species in experimental grasslands. Oikos 118:1524–1540CrossRefGoogle Scholar
  41. Roscher C, Schmid B, Buchmann N, Weigelt A, Schulze E-D (2010) Legume species differ in the responses of their functional traits to plant diversity. Oecologia. doi: 0.1007/s00442-010-1735-9 PubMedGoogle Scholar
  42. Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E-D (2003) The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84:1539–1552CrossRefGoogle Scholar
  43. Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756Google Scholar
  44. Smith VH (1992) Effects of nitrogen:phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems. Biogeochemistry 18:19–35CrossRefGoogle Scholar
  45. Spehn EM, Scherer-Lorenzen M, Schmid B, Hector A, Caldeira MC, Dimitrakopoulos PG, Finn JA, Jumpponen A, O’Donnovan G, Pereira JS, Schulze E-D, Troumbis AY, Körner C (2002) The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98:205–218CrossRefGoogle Scholar
  46. Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze E-D, Siamantziouras A-SD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecol Monogr 75:37–63CrossRefGoogle Scholar
  47. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720CrossRefGoogle Scholar
  48. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302CrossRefGoogle Scholar
  49. Vitousek PM, Field CB (1999) Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46:179–202Google Scholar
  50. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  51. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(58):1–45CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Christiane Roscher
    • 1
    • 5
  • Susanne Thein
    • 1
  • Alexandra Weigelt
    • 2
  • Vicky M. Temperton
    • 3
  • Nina Buchmann
    • 4
  • Ernst-Detlef Schulze
    • 1
  1. 1.Max Planck Institute for BiogeochemistryJenaGermany
  2. 2.Institute of Biology IUniversity of LeipzigLeipzigGermany
  3. 3.Institute of Chemistry and Dynamics of the Geosphere, ICG-3 PhytosphereJulichGermany
  4. 4.Institute of Plant, Animal and Agroecosystem Sciences, ETH ZurichZurichSwitzerland
  5. 5.UFZ, Helmholtz Centre for Environmental Research, Department of Community EcologyHalleGermany

Personalised recommendations