Advertisement

Plant and Soil

, Volume 337, Issue 1–2, pp 273–283 | Cite as

Agronomic biofortification of Brassica with selenium—enrichment of SeMet and its identification in Brassica seeds and meal

  • Mervi M. SeppänenEmail author
  • Juha Kontturi
  • Isabel Lopez Heras
  • Yolanda Madrid
  • Carmen Cámara
  • Helinä Hartikainen
Regular Article

Abstract

Selenium (Se) is an essential micronutrient and is circulated to the food chain through crops. Brassica species are efficient in Se accumulation and thus, good species for Se biofortification purposes. The residual fraction obtained after oil processing of Brassica seeds, the meal, is an important protein source in animal diets and used in feed concentrates. The accumulation of soil or foliar applied Se in the seeds and meal of Brassica napus and B. rapa as well as its effects on growth and yield formation was studied in two field experiments. Also, a HPLC-ICP-MS based method for the identification and quantification of Se species in Brassica seeds and meal was developed. Selenium application did not affect the yield or oil content. High accumulation of Se in the seeds and meal (1.92–1.96 μg Se g−1) was detected. Biotransformation of inorganic Se was evaluated by using HPLC-ICP-MS previous enzymatic hydrolysis for species extraction. The Se speciation studies showed that up to 85% of the total Se was SeMet whereas other Se-species were not detected. We conclude that the agronomic biofortification of Brassica species can improve the nutritive quality of the protein rich meal fraction as it contains significant amount of SeMet.

Keywords

Biofortification Brassica napus Brassica rapa Fertilization Oil seed rape Selenium SeMet Speciation Turnip rape 

Notes

Acknowledgements

M. Seppänen greatfully acknowledges Dr. Päivi Ekholm for assistance in Se analysis and Raisio Ltd. and Yara-Suomi Ltd. for their financial support and the Spanish team to the MICIN and Regional Government of Madrid for financial support through the projects CTQ-2008-05925 and CAM-S2009/AGR/1464 respectively.

References

  1. Bañuelos GS, Mayland HF (2000) Absorption and distribution of selenium in animals consuming canola grown for selenium phytoremediation. Ecotoxicol Environ Saf 46:322–328CrossRefPubMedGoogle Scholar
  2. Broadley MR, Alcock MR, Alford J, Cartwright P, Foot I, Fairwheather-Tait SJ, Hart DJ, Hurst R, Knott P, McGrath SP, Meacham MC, Norman K, Mowat H, Scott P, Stroud JL, Tovey M, Tucker M, White PJ, Young SD, Zhao F-J (2010) Selenium biofortification of high-yielding winter wheat (Tritium aestivum L.) by liquid and granular Se fertilization. Plant Soil 332:5–18CrossRefGoogle Scholar
  3. Cabañero AI, Madrid Y, Cámara C (2005) Enzymatic probe sonication extraction of selenium in animal-based food samples: a new perspective on sample preparation for total and selenium speciation studies. J Anal Bioanal Chem 381:373–379CrossRefGoogle Scholar
  4. Capelo JL, Ximenez-Embun P, Madrid-Albarran Y, Camara C (2004) Enzymatic probe sonication: enhancement of protease-catalyzed hydrolisis of selenium bound to proteins in yeast. Anal Chem 76:233–237CrossRefPubMedGoogle Scholar
  5. Combs GF Jr (2001) Selenium in global food systems. Br J Nutr 85:517–542CrossRefPubMedGoogle Scholar
  6. Cuderman P, Kreft I, Germ M, Kovacevic M, Stibilj V (2008) Selenium species in selenium-enriched and drought-exposed potatoes. J Agric Food Chem 56:9114–9120CrossRefPubMedGoogle Scholar
  7. Flohe L, Günzler WA, Schock HH (1973) Glutathione peroxidise: a selenoenzyme. FEBS Lett 32:132–134CrossRefPubMedGoogle Scholar
  8. Gissel-Nielsen G (1998) Effects of selenium supplementation on field crops. In: Frankenberger WT Jr, Engberg RA (eds) Environmental chemistry of selenium. New York, Marcel Dekker Inc, pp 99–128Google Scholar
  9. Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318CrossRefPubMedGoogle Scholar
  10. Haug A, Eich-Greatorex S, Bernhoft A, Hetland H, Song T (2008) Selenium bioavailability in chicken fed selenium-fertilized wheat. Acta Agric Scand Sec A 58:65–70Google Scholar
  11. Juniper DT, Phipps RH, Ramos-Morales W, Bertin G (2008) Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in beef cattle. J Anim Sci 86:3100–3109CrossRefPubMedGoogle Scholar
  12. Juniper DT, Phipps RH, Ramos-Morales W, Bertin G (2009) Effect of high dose selenium enriched yeast diets on the distribution of total selenium and selenium species within lamb tissue. Livestock Sci 122:63–67CrossRefGoogle Scholar
  13. Kumpulainen J, Raittila A-M, Lehto J, Koivistoinen P (1983) Electrochemical atomic absorption spectrometric determination of selenium in foods and diets. J Assoc Official Anal Chem 66:1129–1135Google Scholar
  14. Lyons GH, Gene Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80CrossRefGoogle Scholar
  15. Montes-Bayón M, LeDuc DL, Terry N, Caruso JA (2002) Selenium speciation in wild type and genetically modified Se accumulating plants with HPLC separation and ICP-MS/ES-MS detection. J Anal At Spectrom 17:872–879CrossRefGoogle Scholar
  16. Moreno P, Quijano MA, Gutierrez AM, Perez-Conde C, Cámara C (2001) Fractionation studies of selenium compounds from oysters and their determination by high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. J Anal At Spectrom 16:1044–1050CrossRefGoogle Scholar
  17. Pederero Z, Madrid Y (2009) Novel approaches for selenium speciation in food stuffs and biological speciments. Anal Chim Acta 634:135–152CrossRefGoogle Scholar
  18. Pedrero Z, Madrid Y, Hartikainen H, Cámara C (2008) Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. J Agric Food Chem 56:266–271CrossRefPubMedGoogle Scholar
  19. Phipps RH, Grandison AS, Jones AK, Juniper DT, Ramos-Morales W, Bertin G (2008) Selenium supplementation of lactating dairy cows: effects on milk production and total selenium content and specification in blood, milk and cheese. Animal 2:1610–1618CrossRefGoogle Scholar
  20. Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274CrossRefPubMedGoogle Scholar
  21. Polatajko A, Sliwka-Kaszynska M, Dernovies M, Ruzik R, Ruiz Encinar J, Szpunar J (2004) A systematic approach to selenium speciation in selenized yeast. J Anal Atomic Spectrom 19:114–120CrossRefGoogle Scholar
  22. Rayman M (2004) The use of high-Se yeast to raise Selenium status—how does it measure up? Br J Nutr 92:557–573CrossRefPubMedGoogle Scholar
  23. Rayman M (2008) Food-chain selenium and human health: emphases on intake. Br J Nutr 100:254–268PubMedGoogle Scholar
  24. Rotruck JT, Pope AH, Genthe HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidise. Science 179:588–590CrossRefPubMedGoogle Scholar
  25. Rúiz Encinar J, Ruzik R, Buchmann W, Tortajada J, Lobinski R, Szpunar J (2003) Detection of selenocompounds in triptic digest of yeast selenoproteins by MALDI-TOF-MS prior to their structural analysis by ESI-MS. Analyst 128:220–224CrossRefGoogle Scholar
  26. Schwartz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degradation. J Am Chem Soc 79:3292–3293CrossRefGoogle Scholar
  27. Turakainen M, Hartikainen H, Seppänen M (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J Agric Food Chem 52:5378–5382CrossRefPubMedGoogle Scholar
  28. White PJ, Bowen HC, Parmaguru P, Fritz M, Spracken WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937CrossRefPubMedGoogle Scholar
  29. Williams PN, Lombi E, Sun G-X, Schenkel K, Zhu Y-G, Feng X, Zhu J, Carey A-M, Adomako E, Lawgali Y, Deacon C, Mehang AA (2009) Selenium characterisation in the global rice supply chain. Environ Sci Technol 43:6024–6030CrossRefPubMedGoogle Scholar
  30. Zhu Y-G, Pilon-Smits EAH, Zhao F-J, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442CrossRefPubMedGoogle Scholar
  31. Ximenéz-Embúm I, Alonso Y, Madrid-Albarrán Y, Cámara C (2004) Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J Agric Food Chem 52:832–838CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mervi M. Seppänen
    • 1
    Email author
  • Juha Kontturi
    • 1
  • Isabel Lopez Heras
    • 3
  • Yolanda Madrid
    • 3
  • Carmen Cámara
    • 3
  • Helinä Hartikainen
    • 2
  1. 1.Department of Agricultural SciencesUniverstity of HelsinkiHelsinkiFinland
  2. 2.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Departamento de Química AnalíticaUniversidad Complutense de MadridMadridSpain

Personalised recommendations