Plant and Soil

, Volume 340, Issue 1–2, pp 181–198 | Cite as

Spatiotemporal variability of grassland vegetation cover in a catchment in Inner Mongolia, China, derived from MODIS data products

  • David Schaffrath
  • Frauke Katrin Barthold
  • Christian Bernhofer
Regular Article


Conditions, distribution and development of vegetation in semi arid regions are highly variable. In this study we detected the temporal and spatial variability of vegetation in the Xilin river catchment from 2000 to 2008 by analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) data products of that period. The study is based on LAI (Leaf area index) and supported by NDVI (Normalized difference vegetation index) and LST (Land surface temperature) data with a spatial resolution of 1 km. The mean LAI of the catchment from 2000 to 2008 is 0.59. Precipitation data of the study period governs the conditions and distribution of vegetation in the catchment. In dry years, e.g. 2001 and 2005, LAI was clearly lower (0.52) compared to 2003 (LAI = 0.72) which was a wet year. As precipitation generally decreases from south-east to north-west, LAI values decrease according to this gradient. The influence of heavy grazing in the vicinity of the Xilin river is obvious as LAI is low (0.4) in these areas. The high temporal variability of the LAI is displayed by its high mean CV (coefficient of variation) which is 48% for the observed years. The analysis of sample areas illustrates temporal and spatial differences in vegetation development within the catchment and shows a generally delayed growth start in the north-west of the catchment.


LAI MODIS Variability Steppe Xilin Precipitation 



Coefficient of variation


Global precipitation climatology project


Inner Mongolia autonomous region


Inner Mongolia grassland ecosystem research station


Leaf area index


Land surface temperature


Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate


Moderate resolution imaging spectroradiometer


Normalized difference vegetation index


Reference Soil Group


Standard deviation


Ungrazed since 1979


Universe transversal mercator


World reference base


Xilin river catchment



This research was funded by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG) within the research group FOR 536 MAGIM (Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate). We are grateful to IMGERS for providing the precipitation data and would like to thank Wang Lei for precipitation data of the UG79 field site and Katrin Schneider and Wu Jinkui for the precipitation data of Xilinhot, Hadeng, North-East and Tuanbu of 2005 and 2006.


  1. Albertz J (2001) Einführung in die Fernerkundung, Grundlagen der Interpretation von Luft-und Satellitenbildern. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  2. Asner G (2004) Biophysical remote sensing signatures of arid and semiarid ecosystems, remote sensing for Natural Resource Management and Environmental Monitoring, Manual of Remote Sensing, volume 4. Wiley, New JerseyGoogle Scholar
  3. Bai Y, Han X, Wu J, Chen Z, Li L (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184CrossRefPubMedGoogle Scholar
  4. Barnes W, Pagano T, Salomonson V (1998) Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans Geosci Remote Sens 36(4):1088–1100CrossRefGoogle Scholar
  5. Barthold FK, Mazurkiewicz A, Wu J, Vaché KB, Breuer L, Frede HG (2008a) Application of snow model in a large semi arid watershed in Inner Mongolia. Geophys Res Abstr 10, EGU2008-A-05555Google Scholar
  6. Barthold FK, Sayama T, Schneider K, Breuer L, Vache KB, Frede H-G, McDonnell JJ (2008b) Gauging the ungauged basin: a top-down approach in a large semiarid watershed in China. Adv Geosci 18:3–8CrossRefGoogle Scholar
  7. Breuer L, Archer N, Schneider K, Huisman J, Frede H-G (2004) Lasst Gras darüber wachsen: Zur Überweidung der Grassteppe in der Inneren Mongolei. Spieg Forsch 21:86–91Google Scholar
  8. Brueck H, Erdle K, Gao Y, Giese M, Zhao Y, Peth S, Lin S (2009) Effects of N and water supply on water use-efficiency of a semiarid grassland in Inner Mongolia. Plant Soil. doi: 0.1007/s11104-009-0128-5 Google Scholar
  9. Chen S, Xiao X, Liu J, Zhuang D (2003) Observation of land use/cover change of the Xilin River Basin, Inner Mongolia, using multi-temporal Landsat images. Proc SPIE 4890:674–685CrossRefGoogle Scholar
  10. Chen S, Bai Y, Lin G, Liang Y, Han X (2005a) Effects of grazing on photosynthetic characteristics of major steppe species in the Xilin River Basin, Inner Mongolia, China. Photosynthetica 43(4):559–565CrossRefGoogle Scholar
  11. Chen S, Bai Y, Zhang L, Han X (2005b) Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environ Exp Bot 53:65–75CrossRefGoogle Scholar
  12. Christensen L, Coughenour M, Ellis J, Chen Z (2004) Vulnerability of the Asian typical steppe to grazing and climatic change. Clim Change 63:351–368CrossRefGoogle Scholar
  13. Domrös M, Peng G (1988) The climate of China. Springer, Berlin, Heidelberg, New York, London, Paris, TokyoGoogle Scholar
  14. Fan L, Liu Sh, Bernhofer Ch, Liu H, Berger FH (2007) Regional land surface energy fluxes by satellite remote sensing in the upper Xilin River watershed (Inner Mongolia, China). Theor Appl Climatol 88:231–245CrossRefGoogle Scholar
  15. Fan L, Gao Y, Brück H, Bernhofer Ch (2009) Investigating the relationship between NDVI and LAI in semiarid grassland in Inner Mongolia using in-situ measurements. Theor Appl Climatol 95:151–156Google Scholar
  16. Fang H, Liang S (2005) A hybrid inversion method for mapping leaf area index from MODIS data: experiments and application to broadleaf and needleleaf canopies. Remote Sens Environ 94:405–424CrossRefGoogle Scholar
  17. Fensholt R (2004) Earth observation of vegetation status in the Sahelian and Sudanian West Africa: comparison of Terra MODIS and NOAA AVHRR satellite data. Int J Remote Sens 25(9):1641–1659Google Scholar
  18. Fukuo A, Saito G, Akiyama T, Chen Z (2001) Influence of human activities and livestock on Inner Mongolia Grassland.∼acrs2001/pdf/107fukuo.pdf. Accessed 13 Dec 2009
  19. Guo R, Wang XK, Ouyang ZY, Li YN (2006) Spatial and temporal relationships between precipitation and ANPP of four types of grasslands in northern China. J Environ Sci 18(5):1024–1030CrossRefGoogle Scholar
  20. Heisler-White J, Blair JM, Kelly EF, Harmony K, Knapp AK (2009) Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob Chang Biol 15(12):2894–2904CrossRefGoogle Scholar
  21. Hill M, Senarath U, Lee A, Zeppel M, Nightingale J, Williams R (2006) Assessment of the MODIS LAI product for Australian ecosystems. Remote Sens Environ 101:495–518CrossRefGoogle Scholar
  22. Holst J, Liu C, Yao Z, Brüggemann N, Zheng X, Giese M, Butterbach-Bahl K (2008) Fluxes of nitrous oxide, methane and carbon dioxide during freezing-thawing cycles in an Inner Mongolian steppe. Plant Soil 308:105–117CrossRefGoogle Scholar
  23. Hu ZM, Fan JW, Zhong HP, Yu GR (2007) Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland. Sci China Ser D: Earth Sci 50(5):754–764CrossRefGoogle Scholar
  24. Huete A, Justice C, van Leeuwen W (1999) MODIS Vegetation Index (MOD13) Algorithm theoretical basis document, version 3. Accessed 15 Dec 2009
  25. Huete A, Didan K, Miura T, Rodriguez E, Gao X, Ferreira L (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213CrossRefGoogle Scholar
  26. IUSS Working Group WRB (2007) World reference base for soil resources 2006, first update 2007. FAO, RomeGoogle Scholar
  27. Kawamura K, Akiyama T, Yokota H, Tsutsum, M, Watanabe O, Wang S (2003) Quantification of grazing intensities on plant biomass in Xilingol steppe, China using Terra MODIS image. International Workshop organized by Working Group ‡Z/6 ISPRS. 21st October 2003, Kyoto, JapanGoogle Scholar
  28. Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Yasude T, Watanabe O (2005) Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia China. Agric Ecosyst Environ 107:83–93CrossRefGoogle Scholar
  29. Ketzer B, Bernhofer Ch, Liu H (2008) Sensitivity of micrometeorological measurements to detect surface characteristics of grasslands in Inner Mongolia. Int J Biometeorol 52:563–574Google Scholar
  30. King M, Closs J, Wharton S, Myers M (2004) EOS data products handbook, volume 1. Greenbelt, Maryland, Accessed 22 Dec 2009
  31. Knyazikhin Y, Martonchik J, Myneni R, Diner D, Running S (1998) Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J Geophys Res 103:32257–32276CrossRefGoogle Scholar
  32. Knyazikhin Y, Glassy J, Privette J, Tian Y, Lotsch Y, Zhang A (1999) MODIS Leaf Area Index (LAI) and Fraction of PhotosyntheticallyActive Radiation absorbed by vegetation (FPAR) product (MOD15) algorithm theoretical basis document, version 4.0. Accessed 17 Dec 2009
  33. Kramer H (1996) Observation of the earth and its environment, survey of missions and sensors. Springer, Berlin, HeidelbergGoogle Scholar
  34. Lambin E, Ehrlich D (1996) The surface temperature-vegetation index space for land cover and land cover change analysis. Int J Remote Sens 17:463–487CrossRefGoogle Scholar
  35. Lillesand T, Kiefer R (2000) Remote sensing and image interpretation, 4th edn. Wiley, New YorkGoogle Scholar
  36. MAGIM (2004) Matter fluxes of Grasslands in Inner Mongolia as influenced by stocking rate. Accessed 11 Dec 2009
  37. Myneni R, Hoffman S, Knyazikhin Y, Privette J, Glassy J, Tian Y (2002) Global products of vegetation leaf area index and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231CrossRefGoogle Scholar
  38. Myneni R, Knyazikhin Y, Glassy J, Votava P, Shabanov N (2003) User’s guide FPAR, LAI (ESTD: MOD15A2) 8-day composite NASA MODIS Land Algorithm. Accessed 04 Dec 2009
  39. NASA (1999) TERRA: flagship of the earth observing system, press kit. Accessed 10 Dec 2009
  40. NASA (2002) AQUA, press kit. Accessed 12 Dec 2009
  41. Nishihama M, Wolfe R, Solomon D, Patt F, Blanchette J, Fleig A (1997) MODIS level 1A earth location algorithm theoretical basis document, version 3.0. Accessed 18 Dec 2009
  42. Privette J, Myneni R, Knyazikhin Y, Mukelabai M, Roberts G, Tian Y (2002) Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari. Remote Sens Environ 83:232–243CrossRefGoogle Scholar
  43. Ripley EA (1992) Grassland climate. In: Coupland RT (ed) Natural grasslands. Introduction and western hemisphere. Ecosystems of the world, vol 8A. Elsevier, Amsterdam, London, New York, Tokyo, pp 7–24Google Scholar
  44. Schinz A (1989) Cities in China. Borntraeger, Berlin, StuttgartGoogle Scholar
  45. Schneider K, Ketzer B, Breuer L, Vaché KB, Bernhofer C, Frede HG (2007) Evaluation of evapotranspiration methods for model validation in a semi-arid watershed in northern China. Adv Geosci 11:37–42CrossRefGoogle Scholar
  46. Scholz F (1995) Nomadismus. Theorie und Wandel einer sozio-ökologischen Kulturweise, Franz Steiner Verlag, StuttgartGoogle Scholar
  47. Steffens M, Kölbl A, Totsche KU, Kögel-Knabner I (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma 143:63–72CrossRefGoogle Scholar
  48. Tong C, Wu J, Yong S, Yang J, Yong W (2004) A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. J Arid Environ 59:133–149CrossRefGoogle Scholar
  49. USGS (2008c) MODIS/Terra land surface temperature/emissivity. Accessed 22 Dec 2009
  50. van Wijk MT, Williams M (2005) Optical instruments for measuring leaf area index in low vegetation: application in arctic ecosystems. Ecol Appl 15(4):1462–1470CrossRefGoogle Scholar
  51. Wan Z (1999) MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD), Version 3.3. Accessed 18 Dec 2009
  52. Wan Z, Dozier J (1996) A generalized split-window algorithm for retrieving land-surface temprature from space. IEEE Trans Geosci Remote Sen 34:892–905CrossRefGoogle Scholar
  53. Wan Z, Zhang Y, Zhang Q (2004) Quality assessment and validation of the MODIS global land surface temperature. Int J Remote Sens 25(1):261–274CrossRefGoogle Scholar
  54. Wiesmeier M, Barthold F, Blank B, Kögel-Knabner I (2010) Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil. doi: 10.1007/s11104-010-0425-z
  55. Xiao X, Wang Y, Jiang S, Ojima DS, Bonham CD (1995) Interannual variation in the climate and above-ground biomass of Leymus chinense steppe and Stipa grandis steppe in the Xilin river basin, Inner Mongolia, China. J Arid Environ 31(3):283–299CrossRefGoogle Scholar
  56. Zhang N, Zhao Y (2009) Estimating leaf area index by inversion of reflectance model for semiarid natural grasslands. Sci China D: Earth Sci 52(1):66–84CrossRefGoogle Scholar
  57. Zheng SX, Ren HY, Lan ZC, Li WH, Bai YF (2009) Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community. Biogeosciences Discuss 6:9945–9975CrossRefGoogle Scholar
  58. Zhou G, Wang Y, Wang S (2002) Response of grassland ecosystems to precipitation and land use along the Northeast China Transect. J Veg Sci 13:361–368CrossRefGoogle Scholar
  59. Zhu Z, Wang T (1993) Trends of desertification and its rehabilitation in China. In: UNEP desertification control bulletin. Accessed 12 Dec 2009

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • David Schaffrath
    • 1
  • Frauke Katrin Barthold
    • 2
  • Christian Bernhofer
    • 1
  1. 1.Institute of Hydrology and MeteorologyTechnische Universität DresdenDresdenGermany
  2. 2.Institute for Landscape Ecology and Resources Management, Research Centre for BioSystems, Land Use and Nutrition (IFZ)Justus-Liebig-University GiessenGiessenGermany

Personalised recommendations