Advertisement

Plant and Soil

, Volume 333, Issue 1–2, pp 181–190 | Cite as

Effects of land abandonment on plant litter decomposition in a Montado system: relation to litter chemistry and community functional parameters

  • Helena CastroEmail author
  • Claire Fortunel
  • Helena Freitas
Regular Article

Abstract

Changes in land use and subsequent shifts in vegetation can influence decomposition through changes in litter quality (chemistry and structure) and alterations of soil temperature and moisture. Our aim was to study the effects of land abandonment on litter decomposition in a Mediterranean area of Montado, South Portugal. We tested the hypothesis that decomposition tends to slow down with abandonment, as woody species, richer in lignified structures, replace herbaceous species. We assessed the decomposition of community litter in situ using litterbag technique. To test the influence of local conditions, we simultaneously incubated a standard litter in situ. Our results showed that the shift from herbaceous to shrub-dominated communities lead to decreased decomposition rates. Changes in litter decomposition were primarily driven by changes in litter quality, even though the uneven pattern of litter mass loss over the experiment might reveal an effect from possible differences in microclimate. Shrub litter had higher nutrient content than herbaceous litter, which seemed to favour higher initial decomposition rates, but lower decomposition rate in the longer term. Shrubs also contribute to woody litter, richer in lignin, and secondary compounds that retard decomposition, and may play a role in increasing pools of slowly decomposing organic matter.

Keywords

Ecosystem processes Land use change Leaf dry matter content Life form Litter quality Mediterranean 

Notes

Acknowledgments

This work was financed by the EU project VISTA (Vulnerability of Ecosystem Services to Land Use Change in Traditional Agricultural Landscapes; contract nº EVK2-2001-000356) and by a PhD grant from FCT (Portuguese Foundation for Science and Technology). Many thanks to ADPM who gave permission for this work to be developed at their property.

Supplementary material

11104_2010_333_MOESM1_ESM.doc (76 kb)
Supplementary Material 1 (DOC 75 kb)

References

  1. Aber JD, Melillo JM (1982) Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can J Bot 60:2263–2269Google Scholar
  2. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449CrossRefGoogle Scholar
  3. Aerts R, Caluwe H, Beltman B (2003) Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands. Ecology 84:3198–3208CrossRefGoogle Scholar
  4. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22CrossRefGoogle Scholar
  5. Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and nutrient turnover. Adv Ecol Res 38:1–12CrossRefGoogle Scholar
  6. Berg B, Ekbohm G, Mcclaugherty C (1984) Lignin and holocellulose relations during long-term decomposition of some forest litters - long-term decomposition in a scots pine forest. Can J Bot-Rev Can Bot 62:2540–2550CrossRefGoogle Scholar
  7. Berg B, Ekbohm G, Johansson MB, McClaugherty C, Rutigliano F, DeSanto AV (1996) Maximum decomposition limits of forest litter types: a synthesis. Can J Bot-Rev Can Bot 74:659–672CrossRefGoogle Scholar
  8. Castro H (2008) Effects of land use change on plant composition and ecosystem fucntioning in an extensive agro-pastoral system: plant functional traits and ecosystem processes. University of CoimbraGoogle Scholar
  9. Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200CrossRefGoogle Scholar
  10. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  11. Cornelissen JHC, van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RSP, Alatalo J, Chapin FS, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jonsdottir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenstrom A, Tolvanen A, Totland O, Wada N, Welker JM, Zhao XQ, Team MOL (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627CrossRefPubMedGoogle Scholar
  12. Correia OA (2002) Os Cistus: as Espécies do futuro? In: Loução MA (ed) Fragmentos de ecologia. Ecolar Editora, Lisboa, pp 97–119Google Scholar
  13. Cortez J, Demard JM, Bottner P, Monrozier LJ (1996) Decomposition of mediterranean leaf litters: a microcosm experiment investigating relationships between decomposition rates and litter quality. Soil Biol Biochem 28:443–452CrossRefGoogle Scholar
  14. Cortez J, Garnier E, Pérez-Harguindeguy N, Debussche M, Gillon D (2007) Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant Soil 296:19–34CrossRefGoogle Scholar
  15. Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66CrossRefGoogle Scholar
  16. Couteaux MM, McTiernan KB, Berg B, Szuberla D, Dardenne P, Bottner P (1998) Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595CrossRefGoogle Scholar
  17. De Angelis P, Chigwerewe KS, Mugnozza GES (2000) Litter quality and decomposition in a CO2-enriched Mediterranean forest ecosystem. Plant Soil 224:31–41CrossRefGoogle Scholar
  18. Dorrepaal E, Cornelissen JHC, Aerts R, Wallen B, Van Logtestijn RSP (2005) Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J Ecol 93:817–828CrossRefGoogle Scholar
  19. Eviner VT (2004) Plant traits that influence ecoystem processes vary independently among species. Ecology 85:2215–2229CrossRefGoogle Scholar
  20. Eviner VT, Chapin FS (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Syst 34:455–485CrossRefGoogle Scholar
  21. Fioretto A, Papa S, Fuggi A (2003) Litter-fall and litter decomposition in a low Mediterranean shrubland. Biol Fertil Soils 39:37–44CrossRefGoogle Scholar
  22. Fioretto A, Di Nardo C, Papa S, Fuggi A (2005) Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37:1083–1091CrossRefGoogle Scholar
  23. Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Leps J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quetier F, Robson M, Sternberg M, Theau JP, Thebault A, Zarovali M (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611CrossRefPubMedGoogle Scholar
  24. Gallardo A, Merino J (1993) Leaf decomposition in 2 Mediterranean ecosystems of Southwest Spain - influence of substrate quality. Ecology 74:152–161CrossRefGoogle Scholar
  25. Garnier E, Vancaeyzeele S (1994) Carbon and nitrogen-content of congeneric annual and perennial grass species - relationships with growth. Plant Cell Environ 17:399–407CrossRefGoogle Scholar
  26. Garnier E, Cortez J, Billés G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional Markers capture ecosystem properties during secundary succession. Ecology 85:2630–2637CrossRefGoogle Scholar
  27. Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Leps J, Meier T, Pakeman R, Papadimitriou M, Papanastasis V, Quested HM, Quétier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau JP, Thébault A, Vile D, Zarovali MP (2007) Assessing the effects of land use change on plant traits communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 european sites. Ann Bot 99:967–985CrossRefPubMedGoogle Scholar
  28. Gillon D, Joffre R, Ibrahima A (1994) Initial litter properties and decay rate: a microcosm experiment on Mediterranean species. Can J Bot 72:946–954CrossRefGoogle Scholar
  29. Gillon D, Houssard C, Joffre R (1999) Using near-infrared reflectance spectroscopy to predict carbon, nitrogen and phosphorus content in heterogeneous plant material. Oecologia 118:173–182CrossRefGoogle Scholar
  30. Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties. Wiley, ChichesterGoogle Scholar
  31. Joffre R, Gillon D, Dardenne P, Agneessens R, Biston R (1992) The use of near-infrared reflectance spectroscopy in litter decomposition studies. Ann Sci For 49:481–488CrossRefGoogle Scholar
  32. Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006) Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct Ecol 20:21–30CrossRefGoogle Scholar
  33. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626CrossRefGoogle Scholar
  34. Moro MJ, Domingo F (2000) Litter decomposition in four woody species in a Mediterranean climate: weight loss, N and P dynamics. Ann Bot 86:1065–1071CrossRefGoogle Scholar
  35. Murphy J, Riley JP (1962) A modified solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  36. Nuñez E, Cabeza J, Escudero JC (1989) Relación entre la biomasa de jarales y su rendimiento energetico por pirolisis. CIHEAM - Options Méditerranéenes 3:345–350Google Scholar
  37. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331Google Scholar
  38. Pardo F, Gil L, Pardos JA (1997) Field study of beech (Fagus sylvatica L) and melojo oak (Quercus pyrenaica Willd) leaf litter decomposition in the centre of the Iberian Peninsula. Plant Soil 191:89–100CrossRefGoogle Scholar
  39. Pérez-Harguindeguy N, Díaz S, Cornelissen JH, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and thoughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30CrossRefGoogle Scholar
  40. Poorter H, Bergkotte M (1992) Chemical-composition of 24 wild-species differing in relative growth-rate. Plant Cell Environ 15:221–229CrossRefGoogle Scholar
  41. Quested H, Eriksson O, Fortunel C, Garnier E (2007) Plant traits relate to whole-community litter quality and decomposition following land use change. Funct Ecol 21:1016–1026CrossRefGoogle Scholar
  42. Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8:51–81CrossRefGoogle Scholar
  43. Simões MP (2002) Dinâmica de biomassa (carbono) e nutrientes em Cistus salvifolius L. e Cistus ladanifer L. Influência nas características do solo. Universidade de Évora, ÉvoraGoogle Scholar
  44. Wardle DA, Bonner KI, Barker GM (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595CrossRefGoogle Scholar
  45. Zar JH (1996) Biostatistical analysis. Prentice-Hall, NJGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Helena Castro
    • 1
    Email author
  • Claire Fortunel
    • 2
    • 3
  • Helena Freitas
    • 1
  1. 1.Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.Centre dEcologie Fonctionnelle et Evolutive, CNRS (UMR 5175)Montpellier cedex 5France
  3. 3.INRA, UMR Ecologie des Forêts de GuyaneKourou cedexFrench Guiana

Personalised recommendations