Plant and Soil

, Volume 326, Issue 1–2, pp 171–185

Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus

  • Syam S. Andra
  • Rupali Datta
  • Dibyendu Sarkar
  • Konstantinos C. Makris
  • Conor P. Mullens
  • Shivendra V. Sahi
  • Stephan B. H. Bach
Regular Article


In a hydroponic setting, we investigated the possible role of phytochelatins (metal-binding peptides) in the lead (Pb) tolerance of vetiver grass (Vetiveria zizanioides L.). Pb was added to the nutrient medium at concentrations ranging from 0 to 1,200 mg L−1. Furthermore, we simulated the effect of soil phosphorus (P) on potentially plant available Pb by culturing vetiver grass in P-rich nutrient media. After 7 days of exposure to Pb, we evaluated the Pb uptake by vetiver grass. Results indicate that vetiver can accumulate Pb up to 3,000 mg kg−1 dry weight in roots with no toxicity. Formation of lead phosphate inhibited Pb uptake by vetiver, suggesting the need for an environmentally safe chelating agent in conjunction with phytoremediation to clean up soils contaminated with lead-based paint. Unambiguous characterization of phytochelatins (PCn) was possible using high pressure liquid chromatography coupled with electrospray ionization mass spectrometry (LC-ESMS). Vetiver shows qualitative and quantitative differences in PCn synthesis between root and shoot. In root tissue from vetiver exposed to 1,200 mg Pb L-1, phytochelatins ranged from PC1 to PC3. Collision-induced dissociation of the parent ion allowed confirmation of each PCn based on the amino acid sequence. Possible Pb-PC1 and Pb2-PC1 complexes were reported in vetiver root at the highest Pb concentration. The data from these experiments show that the most probable mechanism for Pb detoxification in vetiver is by synthesizing PCn and forming Pb–PCn complexes.


Hydroponics Lead-based paint Liquid chromatography Mass spectrometry Phytochelatins Phytoremediation Vetiver 



Collision induced dissociation


Electrospray ionization mass spectrometry




High-performance liquid chromatography








Scanning electron microscopy


  1. Andra SS (2008) Phytoremediation of lead contaminated soils. PhD Dissertation, University of Texas at San Antonio, San Antonio, TXGoogle Scholar
  2. Andra SS, Sarkar D, Datta R, Saminathan S (2006) Lead in soils in paint contaminated residential sites at San Antonio, Texas and Baltimore, Maryland. Bull Environ Contam Toxicol 77:643–650. doi:10.1007/s00128-006-1111-y CrossRefPubMedGoogle Scholar
  3. Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SBH (2009) Induction of lead-binding phytochelatins in vetiver grass [Vetiveria zizanioides (L.)]. J Environ Qual 38:868–877Google Scholar
  4. ATSDR (2000) Lead toxicity. In: Case studies in environmental medicine, Publication No.: ATSDR-HE-CS-2001-0001. Agency for Toxic Substances and Disease Registry, Atlanta, GAGoogle Scholar
  5. Bach SBH, Sepeda TG, Merrill GN, Walmsley JA (2005) Complexes of dibromo(ethylenediamine) palladium(II) observed from aqueous solutions by electrospray mass spectrometry. J Am Soc Mass Spectrom 16:1461–1469. doi:10.1016/j.jasms.2005.04.011 CrossRefPubMedGoogle Scholar
  6. Bach SBH, Green CE, Nagore LI, Sepeda TG, Merrill GN (2007) Complexes of dichloro(ethylenediamine) palladium(II) observed from aqueous solutions by electrospray mass spectrometry. J Am Soc Mass Spectrom 18:769–777. doi:10.1016/j.jasms.2006.12.013 CrossRefPubMedGoogle Scholar
  7. Baker AJM, McGrath SP, Sidoli CMD, Reeves RS (1994) The possibility of in-situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycling 11:41–49. doi:10.1016/0921-3449(94)90077-9 CrossRefGoogle Scholar
  8. Cao X, Ma LQ, Chen M, Singh SP, Harris WG (2002) Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ Sci Technol 36:5296–5304. doi:10.1021/es020697j CrossRefPubMedGoogle Scholar
  9. Carbonell AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH Jr (1998) Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci Total Environ 217:189–199. doi:10.1016/S0048-9697(98)00195-8 CrossRefGoogle Scholar
  10. Chekmeneva E, Prohens R, Díaz-Cruz JM, Ariño C, Esteban M (2008) Thermodynamics of Cd2 + and Zn2 + binding by the phytochelatin (γ-Glu-Cys) 4-Gly and its precursor glutathione. Anal Biochem 375:82–89. doi:10.1016/j.ab.2008.01.008 CrossRefPubMedGoogle Scholar
  11. Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere 60:1365–1375. doi:10.1016/j.chemosphere.2005.02.035 CrossRefPubMedGoogle Scholar
  12. Dalton PA, Smith RJ, Truong PNV (1996) Vetiver grass hedges for erosion control on a cropped flood plain: hedge hydraulics. Agric Water Manage 31:91–104. doi:10.1016/0378-3774(95)01230-3 CrossRefGoogle Scholar
  13. Datta R, Sarkar D (2004) Effective integration of soil chemistry and plant molecular biology in phytoremediation of metals: an overview. Environ Geosci 11:53–63. doi:10.1306/eg.08280303014 CrossRefGoogle Scholar
  14. do Nascimento CWA, Xing BS (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Scientia Agricola 63:299–311Google Scholar
  15. El-Zohri MHA, Cabala R, Frank H (2005) Quantification of Phytochelatins in plants by reversed-phase HPLC-ESI-MS-MS. Anal Bioanal Chem 382:1871–1876. doi:10.1007/s00216-005-3331-0 CrossRefPubMedGoogle Scholar
  16. Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003. doi:10.1016/j.chemosphere.2007.01.062 CrossRefPubMedGoogle Scholar
  17. Figueroa JAL, Afton S, Wrobel K, Wrobel K, Caruso JA (2007) Analysis of phytochelatins in nopal (Opuntia ficus): a metallomics approach in the soil-plant system. J Anal At Spectrom 22:897–904. doi:10.1039/b703912c CrossRefGoogle Scholar
  18. Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 18:6838–6842. doi:10.1073/pnas.86.18.6838 CrossRefGoogle Scholar
  19. Gupta M, Rai UN, Tripathi RD, Chandra P (1995) Lead-induced changes in glutathione and phytochelatin in Hydrilla verticillata (i.f.) Royle. Chemosphere 30:2011–2020. doi:10.1016/0045-6535(95)00075-J CrossRefGoogle Scholar
  20. Gustafsson JP (2005) Visual MINTEQ, ver. 2.32. Available at Accessed 17 Jan 2009
  21. Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465. doi:10.1007/s11738-997-0042-5 CrossRefGoogle Scholar
  22. Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84. doi:10.1111/j.1469-8137.1996.tb01147.x CrossRefGoogle Scholar
  23. Jacobs DE, Clickner RP, Zhou JY, Viet SM, Marker DA, Rogers JW, Zeldin DC, Broene P, Friedman W (2002) The prevalence of lead-based paint hazards in U.S. housing. Environ Health Perspect 110:A599–A606PubMedGoogle Scholar
  24. Kopittke PM, Ashera CJ, Menziesa NW (2007) Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environ Pollut 153:548–554. doi:10.1016/j.envpol.2007.09.012 CrossRefPubMedGoogle Scholar
  25. Kozka M, Baralkiewicz D, Piechalak A, Tomaszewska B (2006) Determination of thiol compounds in Pisum sativum exposed to lead and cadmium ions by HPLC with post-column derivatization. Chem Anal (Pol) 51:427–437Google Scholar
  26. Lai HY, Chen ZS (2004) Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421–430. doi:10.1016/j.chemosphere.2003.11.009 CrossRefPubMedGoogle Scholar
  27. Landrigan PJ (1991) Current issues in the epidemiology and toxicology of occupational exposure to lead. Toxicol Ind Health 7:9–14PubMedGoogle Scholar
  28. Lee M, Lee KL, Noh EE, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836. doi:10.1104/pp.104.058107 CrossRefPubMedGoogle Scholar
  29. Leopold I, Gunther D (1997) Investigation of the binding properties of heavy-metal-peptide complexes in plant cell cultures using HPLC-ICP-MS. Fresenius J Anal Chem 359:364–370. doi:10.1007/s002160050588 CrossRefGoogle Scholar
  30. Leopold I, Gunther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323–1328. doi:10.1016/S0031-9422(98)00347-1 CrossRefGoogle Scholar
  31. Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039. doi:10.1016/j.chemosphere.2006.03.033 CrossRefPubMedGoogle Scholar
  32. Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232. doi:10.1021/es0604919 CrossRefPubMedGoogle Scholar
  33. Pichai NMR, Samjiamjiaras R, Thammanoon H (2001) The wonders of a grass, vetiver and its multifold applications. Asian Infrastruct Rev Res 3:1–4Google Scholar
  34. Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162. doi:10.1016/S0031-9422(02)00067-5 CrossRefPubMedGoogle Scholar
  35. Polec-Pawlak K, Ruzik R, Lipiec E (2007) Investigation of Cd(II), Pb(II) and Cu(I) complexation by glutathione and its component amino acids by ESI-MS and size exclusion chromatography coupled to ICP-MS and ESI-MS. Talanta 72:1564–1572. doi:10.1016/j.talanta.2007.02.008 CrossRefPubMedGoogle Scholar
  36. Rea PA, Vatamaniuk OK, Rigden DJ (2004) Weeds, worms, and more. Papain's long-lost cousin, Phytochelatin synthase. Plant Physiol 136:2463–2474. doi:10.1104/pp.104.048579 CrossRefPubMedGoogle Scholar
  37. Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680. doi:10.1021/es020675x CrossRefPubMedGoogle Scholar
  38. Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301PubMedGoogle Scholar
  39. Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954PubMedCrossRefGoogle Scholar
  40. Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280. doi:10.1016/S0098-8472(02)00002-3 CrossRefGoogle Scholar
  41. Tang XY, Zhu YG, Chen SB, Tang LL, Chen XP (2004) Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test. Environ Int 30:531–537. doi:10.1016/j.envint.2003.10.008 CrossRefPubMedGoogle Scholar
  42. USEPA (2001) U.S. EPA, Lead: identification of dangerous levels of lead; Final Rule. 40CFR745. Fed Regist 66:6763–6765Google Scholar
  43. Vacchina V, Chassaigne H, Oven M, Zenk MH, Lobinski R (1999) Characterisation and determination of phytochelatins in plant extracts by electrospray tandem mass spectrometry. Analyst (Lond) 124:1425–1430. doi:10.1039/a905163e CrossRefGoogle Scholar
  44. Vatamaniuk OK, Mari S, Lu YP, Rea P (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase—blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biochem 275:31451–31459Google Scholar
  45. Wawrzynski A, Kopera E, Wawrzyńska A, Kamińska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57:2173–2182. doi:10.1093/jxb/erj176 CrossRefPubMedGoogle Scholar
  46. Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79. doi:10.1104/pp.119.1.73 CrossRefGoogle Scholar
  47. Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1177. doi:10.1104/pp.121.4.1169 CrossRefPubMedGoogle Scholar
  48. Zhu YG, Chen SB, Yang JC (2004) Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environ Int 30:351–356. doi:10.1016/j.envint.2003.07.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Syam S. Andra
    • 1
  • Rupali Datta
    • 2
  • Dibyendu Sarkar
    • 3
  • Konstantinos C. Makris
    • 4
  • Conor P. Mullens
    • 5
  • Shivendra V. Sahi
    • 6
  • Stephan B. H. Bach
    • 5
  1. 1.Environmental Geochemistry LaboratoryUniversity of Texas at San AntonioSan AntonioUSA
  2. 2.Biological SciencesMichigan Technological UniversityHoughtonUSA
  3. 3.Department of Earth and Environmental StudiesMontclair State UniversityMontclairUSA
  4. 4.The Cyprus International Institute for the Environment and Public Health in association with the Harvard School of Public HealthNicosiaCyprus
  5. 5.Department of ChemistryUniversity of TexasSan AntonioUSA
  6. 6.Department of BiologyWestern Kentucky UniversityBowling GreenUSA

Personalised recommendations