Plant and Soil

, Volume 326, Issue 1–2, pp 21–29 | Cite as

C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi

  • M. M. Chen
  • H. B. Yin
  • P. O’Connor
  • Y. S. Wang
  • Y. G. Zhu
Regular Article

Abstract

Ecological stoichiometry has been widely applied in aquatic ecosystems, but has limited implications in terrestrial ecosystems. The pot experiments with Trifolium repens L. were conducted to demonstrate the relations between C: N: P, biological components and growth rate of clover colonized by arbuscular mycorrhizal (AM) fungi. The results showed that for mycorrhizal clover, N, P concentrations increased with increasing growth rate, in support of the Growth Rate Hypothesis (GRH). Mycorrhizal clover had higher P and RNA concentrations than non-mycorrhizal clover, indicating that the increase in P concentration would invest more RNA to meet the synthesis of protein. Results also indicated that the increase in N concentration with rapid growth rate may be attributed to the increase in the concentration of protein N. Underlying mechanisms driving the association of C: N: P with growth rate for symbiotic partners should help elucidate the allocation of major nutrients to cellular organs and trophic dynamics in terrestrial ecosystems.

Keywords

AM fungi C: N: P stoichiometry Guanidinium isothiocyanate (GITC) method GRH Nutrient allocation 

References

  1. Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol 41:271–303. doi:10.1146/annurev.phyto.41.052002.095518 CrossRefPubMedGoogle Scholar
  2. Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207. doi:10.1007/BF00012037 CrossRefGoogle Scholar
  3. Brandhorst BP, McConkey EH (1974) Stability of nuclear RNA in mammalian cells. J Mol Biol 85:451–463. doi:10.1016/0022-2836(74)90444-6 CrossRefGoogle Scholar
  4. Campana T, Schwartz LM (1981) RNA and associated enzymes. In: Schwartz LM, Azar MM (eds) Advanced cell biology. Van Nostrand Reinhold, New York, USA, pp 877–944Google Scholar
  5. Chen BD, Shen H, Li XL, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229. doi:10.1023/B:PLSO.0000035538.09222.ff CrossRefGoogle Scholar
  6. Chen BD, Zhu YG, Duan J, Xiao XY, Smith SE (2007) Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut 147:374–380. doi:10.1016/j.envpol.2006.04.027 CrossRefPubMedGoogle Scholar
  7. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem 162:156–159. doi:10.1016/0003-2697(87)90021-2 CrossRefPubMedGoogle Scholar
  8. Daufresne T, Loreau M (2001) Plant-herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation? Ecol Lett 4:196–206. doi:10.1046/j.1461-0248.2001.00210.x CrossRefGoogle Scholar
  9. Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observation and consequences. Ecology 80:735–751Google Scholar
  10. Elser JJ, Dobberfuhl D, Mackay NA, Schampel JH (1996) Organism size, life history, and N: P stoichiometry: towards a unified view of cellular and ecosystem processes. Bioscience 46:674–684. doi:10.2307/1312897 CrossRefGoogle Scholar
  11. Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison J, Hobbie SE, Odell GM, Weider LJ (2000a) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550. doi:10.1046/j.1461-0248.2000.00185.x CrossRefGoogle Scholar
  12. Elser JJ, Dowling T, Dobberfuhl DA, O’Brien J (2000b) The evolution of ecosystem processes: ecological stoichiometry of a key herbivore in temperate and arctic habitats. J Environ Biol 13:845–853Google Scholar
  13. Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943. doi:10.1046/j.1461-0248.2003.00518.x CrossRefGoogle Scholar
  14. Elser JJ, Watts T, Bitler B, Markow TA (2006) Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila. Funct Ecol 20:846–856. doi:10.1111/j.1365-2435.2006.01165.x CrossRefGoogle Scholar
  15. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x CrossRefGoogle Scholar
  16. Gorokhova E, Dowling TE, Crease WLJ, TJ EJJ (2002) Functional and ecological significance of rDNA intergenic spacer variation in a clonal organism under divergent selection of production rate. Proc Roy Soc London B269:2373–2379Google Scholar
  17. Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x CrossRefGoogle Scholar
  18. Hessel R, van Asch T (2003) Modelling gully erosion for a small catchment on the Chinese Loess Plateau. Catena 54:131–146. doi:10.1016/S0341-8162(03)00061-4 CrossRefGoogle Scholar
  19. Hessen DO, Lyche A (1991) Inter- and intraspecific variations in zooplankton element composition. Arch Hydrobiol 121:343–353Google Scholar
  20. Hessen DO, Jensen TC, Kyle M, Elser JJ (2007) RNA responses to N- and P-limitation; reciprocal regulation of stoichiometry and growth rate in Brachionus. Funct Ecol 21:956–962. doi:10.1111/j.1365-2435.2007.01306.x CrossRefGoogle Scholar
  21. Jackson ML (1958) Soil chemical analysis. Englewood Cliffs, N.J.Google Scholar
  22. Jiang D, Qi L, Tan J (1981) Soil erosion and conservation in the Wuding River Valley, China. In: Morgan RPC (ed) Soil conservation. Wiley, Chichester, pp 461–479Google Scholar
  23. Jones JB (1991) Kjeldahl method for nitrogen determination. Micro-Macro, Athens, GAGoogle Scholar
  24. Karpinets TV, Greenwood D, Sams CE, Ammons JT (2006) Does excess carbon affect respiration of the rotifer Brachyonus calyciflorus Pallas? Freshw Biol 51:2320–2333. doi:10.1111/j.1365-2427.2006.01653.x CrossRefGoogle Scholar
  25. Kyle M, Watts T, Schade J, Elser JJ (2003) A microfluorometric method for quantifying RNA and DNA in terrestrial insects. J Insect Sci 3(1):1–7. doi:10.1672/1536-2442(2003)003[0001:TMOAAE]2.0.CO;2 CrossRefPubMedGoogle Scholar
  26. Li HS (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education, Beijing, pp 186–191Google Scholar
  27. Lovelock CE, Feller IC, Ball MC, Ellis J, Sorrell B (2007) Testing the growth rate and geochemical hypothesis for latitudinal variation in plant nutrients. Ecol Lett 10:1154–1163. doi:10.1111/j.1461-0248.2007.01112.x CrossRefPubMedGoogle Scholar
  28. Lu RK (1999) Analytical methods for soils and agricultural chemistry. China Agricultural Science and Technology, BeijingGoogle Scholar
  29. Main T, Dobberfuhl DR, Elser JJ (1997) N: P stoichiometry and ontogeny in crustacean zooplankton: a test of the growth rate hypothesis. Limnol Oceanogr 42:1474–1478CrossRefGoogle Scholar
  30. Marschner H (1998) Role of root growth, arbuscular mycorrhiza and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56:203–207. doi:10.1016/S0378-4290(97)00131-7 CrossRefGoogle Scholar
  31. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  32. Portillo M, Fenoll C, Escobar C (2006) Evaluation of different RNA extraction methods for small quantities of plant tissue: Combined effects of reagent type and homogenization procedure on RNA quality-integrity and yield. Physiol Plant 128:1–7. doi:10.1111/j.1399-3054.2006.00716.x CrossRefGoogle Scholar
  33. Read D (1991) Mycorrhizas in ecosystems. Experientia 47:376–391. doi:10.1007/BF01972080 CrossRefGoogle Scholar
  34. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:2281–2291. doi:10.1126/science.289.5486.1920 CrossRefGoogle Scholar
  35. Reiners WA (1986) Complementary models for ecosystems. Am Nat 127:59–73. doi:10.1086/284467 CrossRefGoogle Scholar
  36. Schade JD, Kyle M, Hobbie SE, Fagan WF, Elser JJ (2003) Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecol Lett 6:96–101. doi:10.1046/j.1461-0248.2003.00409.x CrossRefGoogle Scholar
  37. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, LondonGoogle Scholar
  38. Sterner RW (1995) Elemental stoichiometry of species in ecosystems. In: Jones C, Lawton J (eds) Linking species and ecosystem. Chapman and Hall, New York, USA, pp 240–252Google Scholar
  39. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton and OxfordGoogle Scholar
  40. Vrede T, Andersen T, Hessen DO (1998) Phosphorus distribution in three crustacean zooplankton species. Limnol Oceanogr 44:225–229Google Scholar
  41. Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ (2004) Functional connections among organism C:N:P stoichiometry, macromolecular composition and growth. Ecology 85:1217–1229. doi:10.1890/02-0249 CrossRefGoogle Scholar
  42. Weider LJ, Makino W, Acharya K, Glenn KL, Kyle M, Urabe J, Elser JJ (2005) Genotype-environment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex. Oecologia 143:537–547. doi:10.1007/s00442-005-0003-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. M. Chen
    • 1
  • H. B. Yin
    • 1
  • P. O’Connor
    • 2
  • Y. S. Wang
    • 3
  • Y. G. Zhu
    • 1
  1. 1.Department of Soil Environmental Science, Research Center for Eco-Environmental SciencesThe Chinese Academy of SciencesBeijingChina
  2. 2.School of Earth and Environmental SciencesThe University of AdelaideSouth AustraliaAustralia
  3. 3.Institute of Plant Nutrition and ResourceBeijing Academy of Agriculture and ForestryBeijingChina

Personalised recommendations