Plant and Soil

, Volume 323, Issue 1–2, pp 267–283

Glyphosate and phosphorus leaching and residues in boreal sandy soil

  • Pirkko Laitinen
  • Sari Rämö
  • Unto Nikunen
  • Lauri Jauhiainen
  • Katri Siimes
  • Eila Turtola
Regular Article

Abstract

Glyphosate [(N-(phosphonomethyl)glycine)] is a widely used herbicide and it is known to compete for the same sorption sites in soil as phosphorus. Persistence and losses of glyphosate were monitored in a field with low phosphorus status and possible correlation between glyphosate and phosphorus leaching losses was studied. Glyphosate and its metabolite AMPA (aminomethyl phosphonic acid) residues in soil samples were analysed after a single application in autumn. Twenty months after the application the residues of glyphosate and AMPA in the topsoil (0–25 cm) corresponded to 19% and 48%, respectively, of the applied amount of glyphosate, and traces of glyphosate and AMPA residues were detected in deeper soil layers (below 35 cm). These results indicate rather long persistence for glyphosate in boreal soils. Surface runoff and subsurface drainflow were collected continuously all year round for 20 months and analysed for glyphosate, AMPA, dissolved phosphate, total phosphorus and total suspended solids. The glyphosate concentrations in the surface runoff water were highest, with 99% of the total leaching losses obtained, during the periods of snow melting and soil thawing in the first winter following the autumn application. The total leaching of glyphosate was 5.12 g ha−1 and that of AMPA 0.48 g ha−1, corresponding to about 0.51% and 0.07%, respectively, of the applied amount of glyphosate. No residues of glyphosate and AMPA were detected in the subsurface drainflow. The correlations between concentrations of glyphosate and dissolved orthophosphate as well as glyphosate and total phosphorus in surface runoff were significant (p < 0.01).

Keywords

AMPA Degradation Leaching field Root Phosphorus Soil management 

Abbreviations

AMPA

aminomethylphosphonic acid

DPS

degree of phosphorus saturation

KF

Freundlich sorption coefficient

Ksat

saturated hydraulic conductivity in undisturbed soil

PAC

phosphorus extracted with acid ammonium acetate

PTOT

total phosphorus in soil

PW

phosphorus extracted with water

PO4−P

dissolved orthophosphate phosphorus

SD

standard deviation

TP

total phosphorus in water

TS

total solids

References

  1. Adriaanse PI, Linders JBHJ, van den Berg GA, Boesten JJTI, van der Bruggen MWP, Jilderda K, Luttik R, Merkens WSW, Stienstra YJ, Teunissen RJM (2008) Development of an assessment methodology to evaluate agricultural use of plant protection products for drinking water production from surface waters. A proposal for the registration procedure in the Netherlands. Alterra-rapport 1635, pp. 1–135, Wageningen, Netherlands. ISSN 1566–77197Google Scholar
  2. Alferness PL, Wiebe LA (2001) Determination of glyphosate and aminomethylphosphonic acid in crops by capillary gas chromatography with mass-selective detection: collative study. J AOAC Int 84:823–846PubMedGoogle Scholar
  3. Alister C, Kogan M, Pinot I (2004) Differential phytotoxicity of glyphosate in maize seedlings following applications to roots or shoot. Eur. Weed Res. Sos. 45:27–32. doi:10.1111/j.1365-3180.2004.00424.x CrossRefGoogle Scholar
  4. Andersson M, Hartikainen H (2007) Simulation of pesticide degradation under cold climate. In: Del Re AAM, Capri E, Fragoulis G, Trevisan M (eds) Proceedings of the 13th Symposium in Pesticide Chemistry — Environmental Fate and Human Health, Piacenza, Italy, Sep 3–6.9.2007. pp. 460–465. La Goliardica Pavese. ISBN 978-88-7830-473-4Google Scholar
  5. Arnaud L, Sailland A, Lebrun M, Pallet K, Ravanel F, Nurit F, Tissut M (1998) Physiological behaviour of tobacco lines expressing EPSP synthase resistant to glyphosate. Pestic Biochem Physiol 62:27–39. doi:10.1006/pest.1998.2363 CrossRefGoogle Scholar
  6. Aura E (1990) Salaojien toimivuus savimaassa. Agricultural Research Centre of Finland. Report No 10/90. Jokioinen, Finland, 93 p.Google Scholar
  7. Autio S, Siimes K, Laitinen P, Rämö S, Oinonen S, Eronen L (2004) Adsorption of sugar beet herbicides to Finnish soils. Chemosphere 55:215–226. doi:10.1016/j.chemosphere.2003.10.015 CrossRefPubMedGoogle Scholar
  8. Bowman RA (1988) A rapid method to determine total phosphorus in soils. Soil Sci Soc Am J 52:1301–1304Google Scholar
  9. Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456. doi:10.1002/ps.1512 CrossRefPubMedGoogle Scholar
  10. Carlisle SM, Trevors JT (1988) Glyphosate in the environment. Water Air Soil Pollut 39:409–420. ReviewGoogle Scholar
  11. Chang SC, Jackson ML (1957) Fractionation of soil phosphorus. Soil Sci 84:1301–1304. doi:10.1097/00010694-195708000-00005 CrossRefGoogle Scholar
  12. Coupland D, Caseley JC (1979) Presence of 14C activity in root exudates and guttation fluid from Agrypyron repens treated with 14C-labeled glyphosate. New Phytol 83:17–22. doi:10.1111/j.1469-8137.1979.tb00721.x CrossRefGoogle Scholar
  13. Dinehart SK, Smith LM, McMurry ST, Anderson TA, Smith PN, Haukos DA (2009) Toxicity of a glufosinate- and several glyphosate-based herbicides to juvenile amphibians from the Southern High Plains, USA. Sci Total Environ 407:1065–1071. doi:10.1016/j.scitotenv.2008.10.010 CrossRefPubMedGoogle Scholar
  14. Eberbach P, Bowmer K (1995) Conversion of 14C-glyphosate to carbon dioxide by alligator weed. J Aquat Plant Manage 33:27–29Google Scholar
  15. Fomsgaard IS, Spliid NH, Fielding G (2003) Leaching of pesticides through normal-tillage soil — a lysimeter study. II. Glyphosate. J Environ Sci Health B 38:19–35. doi:10.1081/PFC-120016603 CrossRefPubMedGoogle Scholar
  16. Gerritse RG, Beltran J, Hernandez F (1996) Adsorption of atrazine, simazine, and glyphosate in soils of the Gnangara Mound, Western Australia. Aust J Soil Res 34:599–607. doi:10.1071/SR9960599 CrossRefGoogle Scholar
  17. Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup (R) herbicide. In: Ware GW (ed) Rev Environ Contam T167:35–120Google Scholar
  18. Gimsing AL, Borggaard OK (2001) Effect of Background electrolyte on the competitive adsorption of glyphosate and phosphate onto goethite. Clays Clay Miner 49:70–275. doi:10.1346/CCMN.2001.0490310 CrossRefGoogle Scholar
  19. Gimsing AL, Borggaard OK (2002) Competive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides. Clay Miner 37:509–515. doi:10.1180/0009855023730049 CrossRefGoogle Scholar
  20. Graham ER (1948) Determination of soil organic matter by means of a photoelectric colorimeter. Soil Sci 65:181–183. doi:10.1097/00010694-194802000-00004 CrossRefGoogle Scholar
  21. Elonen P (1971) Particle-size analysis of soil. Acta Agral Fenn 122:1–122Google Scholar
  22. Evira (2008) (Finnish Food Safety Authority 2007) Sales of Agricultural herbicides in 2006. Available at http://www.evira.fi/portal/en/plant_production_and_feeds/pesticides/statistics/ Accessed 22 Sep 2008
  23. Hance RL (1976) Adsorption of glyphosate by soils. Pestic Sci 7:363–366. doi:10.1002/ps.2780070407 CrossRefGoogle Scholar
  24. Hartikainen H (1979) Phosphorus and its reaction in terrestrial soils and sediments. J Sci Agric Soc Finl 51:537–624Google Scholar
  25. Heinonen-Tanski H (1989) The effect of temperature and liming on the degradation of glyphosate in two artic forests. Soil Biol Biochem 29:313–317. doi:10.1016/0038-0717(89)90110-7 CrossRefGoogle Scholar
  26. Holford ICR, Hird C, Lawrie R (1997) Effects of animal effluents on the phosphorus sorption characteristics of soils. Aust J Soil Res 35:365–373. doi:10.1071/S96048 CrossRefGoogle Scholar
  27. Insam H (1990) Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol Biochem 22:525–532. doi:10.1016/0038-0717(90)90189-7 CrossRefGoogle Scholar
  28. de Jonge H, de Jonge LW (1999) Influence of pH and solution composition on the sorption of glyphosate and prochloraz to a sandy loam soil. Chemosphere 39:753–763. doi:10.1016/S0045-6535(99)00011-9 CrossRefGoogle Scholar
  29. de Jonge H, de Jonge LW, Jacobsen OH (2000) [14C]Glyphosate transport in undisturbed topsoil columns. Pest Manag Sci 56:909–915. doi:10.1002/1526-4998(200010)56:10<909::AID-PS227>3.0.CO;2-5 CrossRefGoogle Scholar
  30. de Jonge H, de Jonge LW, Jacobsen OH, Yamaguchi T, Moldrup P (2001) Glyphosate sorption in soils of different pH and phosphorus content. Soil Sci 166:230–238. doi:10.1097/00010694-200104000-00002 CrossRefGoogle Scholar
  31. Kjær J, Ullum M, Olsen P, Helweg A, Mogensen BB, Plauborg F, Grant R, Fomsgaard IS, Brusch W (2003) The Danish Pesticide Leaching Assessment Programme: Monitoring Results May 1999–June 2002. Third report. Geological Survey of Denmark and Greenland. Copenhagen, DenmarkGoogle Scholar
  32. Kjær J, Olsen P, Ullum M, Grant R (2005) Leaching of glyphosate and amino-methylphosphonic acid from Danish agricultural field sites. J Environ Qual 34(2):608–620PubMedGoogle Scholar
  33. Kjær J, Olsen P, Ernsten V, Hansen N, Simonsen Y, Jacobsen OH (2007) Transport pathway of strongly sorbin pesticides through structurated drained soils. In: Del Re AAM, Capri E, Fragoulis G, Trevisan M (eds) Environmental Fate and Ecological Effects of Pesticides, XIII International Symposium in Pesticide Chemistry. La Goliardica Pavese, Pavia, Italy, pp 380–385Google Scholar
  34. Korhonen J (ed) (2007) Hydrological Yearbook 2001–2005, The Finnish Environment 44/2007, Finnish Environment Institute (SYKE), Finland 216 p. (Available at http://www.environment.fi/publications)
  35. Laitinen P (2000) Torjunta-aineiden kulkeutuminen — Tulokset vuosilta 1993–1998. In: Laitinen P (ed) Torjunta-aineet peltomaassa, Huuhtoutumiskenttätutkimukset 1993–1998. Seminarium 15.11.2000. MTT, Jokioinen, pp. 24–45. ISBN 951-729-592-8. (in Finnish)Google Scholar
  36. Laitinen P, Rämö S, Siimes K (2007) Glyphosate translocation from plants to soil — does this constitute a significant proportion of residues in soil. Plant Soil 300:51–60. doi:10.1007/s11104-007-9387-1 CrossRefGoogle Scholar
  37. Laitinen P, Siimes K, Eronen L, Rämö S, Welling L, Oinonen S, Mattsoff L, Ruohonen-Lehto M (2006) Fate of the herbicides, glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils. Pest Manag Sci 62:473–491. doi:10.1002/ps.1186 CrossRefPubMedGoogle Scholar
  38. Laitinen P, Siimes K, Rämö S, Jauhiainen L, Oinonen S, Eronen L, Hartikainen H (2008) Soil phosphorus status in environmental risks assessment for glyphosate and glufosinate-ammonium. J Environ Qual 37:830–838. doi:10.2134/jeq2007.0256 CrossRefPubMedGoogle Scholar
  39. Lakanen E, Erviö R (1971) A comparison of eight extractants for the determination of plant available micronutrients in soils. Acta Agral Fenn 123:223–232Google Scholar
  40. Landry D, Dousset S, Fournier J-C, Andreux F (2005) Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanée, 21-France). Environ Pollut 138:191–200. doi:10.1016/j.envpol.2005.04.007 CrossRefPubMedGoogle Scholar
  41. Lookman R, Mercks R, Vlassak K (1995) Geostatical assessement of the regional distribution of phosphate sorption capacity parameters (Feox and Alox) in northern Belgium. Geoderma 66:285–296. doi:10.1016/0016-7061(94)00084-N CrossRefGoogle Scholar
  42. Mamy L, Barriuso E (2005) Glyphosate adsorption in soils compared to herbicide replaced with the introduction of glyphosate resistant crops. Chemosphere 61:844–855. doi:10.1016/j.chemosphere.2005.04.051 CrossRefPubMedGoogle Scholar
  43. Ludvigsen GH, Lode O (2001) Results from “JOVA” the agricultural and environmental monitoring program of pesticides in Norway 1995–1999. Fresenius Environmental Bulletin. Lehrstuhl fur Chemisch-Technische Analyse, Technische Universitat Munchen. Freising-Weihenstephan Ger 10:470–474Google Scholar
  44. Niskanen R (1989) Extractable aluminium, iron and manganese in mineral soils. I. Dependence of extractability on the pH of oxalate, pyrophosphate and EDTA extractants. J Agric Sci Finl 61:73–78Google Scholar
  45. Nomura NS, Hilton HW (1977) The adsorption and degradation of glyphosate in five Hawaiian sugarcane soils. Weed Res 17:113–121. doi:10.1111/j.1365-3180.1977.tb00454.x CrossRefGoogle Scholar
  46. OECD (1981) Guideline for testing of chemicals 106. 1981. Adsorption / Desorption. Adapted 12 May 1981. OECD, Paris, FranceGoogle Scholar
  47. Piccolo A, Celano G (1994) Hydrogen bonding interactions between the herbicide glyphosate and water-soluble humic substances. Environ Toxicol Chem 13:1737–1741. doi:10.1897/1552-8618(1994)13[1737:HIBTHG]2.0.CO;2 CrossRefGoogle Scholar
  48. Puchalski M, Horvath G, Loughran M, Elsner G, Koskinen W (1999) Pesticide-contaminated soil sample stability during frozen storage. J Environ Qual 28:726–729Google Scholar
  49. Reddy KN, Rimando AM, Duke SO (2004) Aminomethyl-phosphonic acid, a metabolite of glyphosate, caused injury in glyphosate-treated, glyphosate-resistant soybeans (Glysine Max). Agric Food Chem 52:5139–5143. doi:10.1021/jf049605v CrossRefGoogle Scholar
  50. Schultz ME, Burnside OC (1980) Adsorption, translocation, and metabolism of 2,4-D and glyphosate in hemp dogbane (Apocynum cannabium). Weed Sci 28:13–20Google Scholar
  51. Siimes K, Rämö S, Welling L, Nikunen U, Laitinen P (2006) Comparison of the behaviour of three herbicides in a field experiment under bare soil conditions. Agric Water Manage 84:53–64. doi:10.1016/j.agwat.2006.01.007 CrossRefGoogle Scholar
  52. Simonsen L, Fomsgaard IS, Svensmark B, Spliid NH (2008) Fate and availability of glyphosate and AMPA in agricultural soil. J Environ Sci Health B 43:365–375. doi:10.1080/03601230802062000 CrossRefPubMedGoogle Scholar
  53. Soil Survey Staff (1992) Keys to Soil Taxonomy, 5th ed. SMSS technical monograph No. 19. Blacksbury, Virginia, p 541Google Scholar
  54. Soveri J, Tirronen T (1984) Hydrologiset havainto- ja mittausmenetelmät. Vesihallitus. National Board of Waters, Finland. Helsinki 1984, pp 85–87Google Scholar
  55. Spann K, Hargreaves P (1994) The determination of glyphosate in soils with moderate to high clay content. Pestic Sci 40:41–48. doi:10.1002/ps.2780400108 CrossRefGoogle Scholar
  56. Sprankle P, Meggit WF, Penner D (1975a) Adsorption, action, and translocation of glyphosate. Weed Sci 23:235–240Google Scholar
  57. Sprankle P, Meggit WF, Penner D (1975b) Adsorption, mobility and microbial degradation of glyphosate in soil. Weed Sci 23:229–234Google Scholar
  58. Stenberg B, Johansson M, Sjödahl-Svensson K, Stenström J, Torstensson L (1998) Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biol Biochem 30:393–402. doi:10.1016/S0038-0717(97)00125-9 CrossRefGoogle Scholar
  59. Stenrød M, Eklo OM, Charnay M-P, Benoit B (2005) Effect of freezing and thawing on microbial activity and glyphosate degradation in two Norwegian soils. Pest Manag Sci 61:887–898. doi:10.1002/ps.1107 CrossRefPubMedGoogle Scholar
  60. Stenrød M, Charnay M-P, Benoit P, Eklo OM (2006) Spatial variability of glyphosate mineralization and soil microbial characteristics in two Norwegian sandy loam soils as affected by surface topographical features. Soil Biol Biochem 38:962–971. doi:10.1016/j.soilbio.2005.08.014 CrossRefGoogle Scholar
  61. Tiberg E (ed) (1998) Nordic Reference Soils, 1. Characterisation and Classification of 13 Typical Nordic Soils, 2. Sorption of 2,4-D, Atrazine and Glyphosate. TemaNord 1998:537, Nordic Council of Ministers, Copenhagen, Denmark, p 106Google Scholar
  62. Törnquist M, Kreuger J, Ulén B (2002) Förekomst av bekämpingsmedel i svenska vatten 1985–2001, Sammanställing av en databas, Resultat från monitoring och riktad provtagning i yt-, grund- och dricksvatten. Ekohydrologi 65, Swedish University of Agricultural Sciences, Uppsala, SwedenGoogle Scholar
  63. Torstensson L (1985) Behavior of glyphosate in soils and its degradation. In: Grossbard E, Atkinson D (eds) The Herbicide Glyphosate. Butterworth and Co. Ltd,, Toronto, pp 221–240Google Scholar
  64. Turtol E, Alakukku L, Uusitalo R, Kaseva A (2007) Surface runoff, subsurface drainflow and soil erosion as affected by tillage in a clayey Finnish soil. Agric. Food Sci 16:332–351. doi:10.2137/145960607784125429 CrossRefGoogle Scholar
  65. Turtola E, Paajanen A (1995) Influence of improved subsurface drainage on phosphorus losses and nitrogen leaching from a heavy clay soil. Agric Water Manage 28:295–310. doi:10.1016/0378-3774(95)01180-3 CrossRefGoogle Scholar
  66. Turtola E, Kemppainen E (1998) Nitrogen and phosphorus losses in surface runoff and drainage water after application of slurry and mineral fertilizer to perennial grass ley. Agric Food Sci 7:569–581Google Scholar
  67. Turtola E, Yli-Halla M (1999) Fate of phosphorus applied in slurry and mineral fertilizer: accumulation in soil and release into surface runoff water. Nutr Cycl Agroecosyst 55:165–174. doi:10.1023/A:1009862227026 CrossRefGoogle Scholar
  68. Turtola E, Lemola R, Laitinen P, Kiljala J, Esala M, Rämö S, Huttu S, Joki-Tokola E, Hakkol H, Lehto E (2005) Ympäristökuormitus luonnonmukaisessa viljelyssä. Environmental Impacts of Organic Farming, Agrifood Research Finland, MTT, Jokioinen, Finland. 68 p. ISBN 951-729-948-6 (in Finnish, abstract in English)Google Scholar
  69. Uusitalo R, Aura E (2005) A rainfall simulation study on the relationships between soil test P versus dissolved potentially bioavailable particulate phosphorus forms in runoff. Agric Food Sci 14:335–345. doi:10.2137/145960605775897713 CrossRefGoogle Scholar
  70. van der Zee SEATM, Fokkink LGJ, van Riemsdijk WH (1987) A new technique for assessment of reversibly adsorbed phosphate. Soil Sci Soc Am J 51:599–604CrossRefGoogle Scholar
  71. Walker A, Rodrigues-Cruz MS, Mitchel MJ (2005) Influence of ageing of residues on the availability of herbicides for leaching. Environ Pollut 133:43–51. doi:10.1016/j.envpol.2004.04.012 CrossRefPubMedGoogle Scholar
  72. Wang YJ, Zhou DM, Sun RJ (2005) Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils. J Environ Sci (China) 17:711–715Google Scholar
  73. Vuorinen J, Mäkitie O (1955) The method of soil testing in use in Finland. Agrogeol Publ 63:1–44Google Scholar
  74. Yli-Halla M, Mokma D, Peltovuori T, Sippola J (2000) Suomalaisia maaprofiileja (Abstract: Agricultural soil profiles in Finland and their classification). Maatalouden Tutkimuskeskuksen Julkaisuja, Sarja A 78. p 104Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Pirkko Laitinen
    • 1
  • Sari Rämö
    • 1
  • Unto Nikunen
    • 1
  • Lauri Jauhiainen
    • 1
  • Katri Siimes
    • 2
  • Eila Turtola
    • 1
  1. 1.MTT Agrifood Research FinlandJokioinenFinland
  2. 2.SYKE Finnish Environment InstituteHelsinkiFinland

Personalised recommendations