Plant and Soil

, Volume 321, Issue 1–2, pp 153–187 | Cite as

Plant root growth, architecture and function

  • Angela Hodge
  • Graziella Berta
  • Claude Doussan
  • Francisco Merchan
  • Martin Crespi
Review Article


Without roots there would be no rhizosphere and no rhizodeposition to fuel microbial activity. Although micro-organisms may view roots merely as a source of carbon supply this belies the fascinating complexity and diversity of root systems that occurs despite their common function. Here, we examine the physiological and genetic determinants of root growth and the complex, yet varied and flexible, root architecture that results. The main functions of root systems are also explored including how roots cope with nutrient acquisition from the heterogeneous soil environment and their ability to form mutualistic associations with key soil micro-organisms (such as nitrogen fixing bacteria and mycorrhizal fungi) to aid them in their quest for nutrients. Finally, some key biotic and abiotic constraints on root development and function in the soil environment are examined and some of the adaptations roots have evolved to counter such stresses discussed.


Root systems Auxin Root architecture Soil heterogeneity Abiotic and biotic stresses Soil micro-organisms (including nitrogen-fixing bacteria and mycorrhizal fungi) 



AH thanks Alastair Fitter, Anna Armstrong and Deirdre Rooney for comments on the ‘Root Function’ and ‘Root Response to Abiotic Stress’ sections. We also thank three anonymous referees for their comments which helped greatly improve the manuscript.


  1. Adams MA, Pate JS (1992) Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.). Plant Soil 145:107–113 doi: 10.1007/BF00009546 CrossRefGoogle Scholar
  2. Ahern CP, Staff IA (1994) Symbiosis in cycads: the origin and development of coralloid roots in Macrozamia communis (Cycadaceae). Am J Bot 81:1559–1570 doi: 10.2307/2445333 CrossRefGoogle Scholar
  3. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120 doi: 10.1016/j.cell.2004.09.018 PubMedCrossRefGoogle Scholar
  4. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot (Lond) 97:883–893 doi: 10.1093/aob/mcl027 CrossRefGoogle Scholar
  5. Amor BB, Sidney L, Shaw SL, Oldroyd GED, Maillet F, Penmetsa RV, Cook D, Long SR, Dénarié J, Gough C (2003) The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J 34:495–506 doi: 10.1046/j.1365-313X.2003.01743.x PubMedCrossRefGoogle Scholar
  6. Andersson CR, Jensen EO, Llewellyn DJ, Dennis ES, Peacock WJ (1996) A new hemoglobin gene from soybean: a role for hemoglobin in all plants. Proc Natl Acad Sci USA 93:5682–5687 doi: 10.1073/pnas.93.12.5682 CrossRefGoogle Scholar
  7. Armstrong J, Armstrong W (1988) Phragmites australis–a preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytol 108:373–382 doi: 10.1111/j.1469-8137.1988.tb04177.x CrossRefGoogle Scholar
  8. Armstrong W, Justin SHFW, Beckett PM, Lythe S (1991) Root adaptation to soil waterlogging. Aquat Bot 39:57–73 doi: 10.1016/0304-3770(91)90022-W CrossRefGoogle Scholar
  9. Atkinson D, Berta G, Hooker JE (1994) Impact of root colonization in root architecture, root longevity and the formation of growth regulators. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystem. Birkhäuser Verlag, Basel, pp 89–99Google Scholar
  10. Azcón R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivar. New Phytol 87:677–685 doi: 10.1111/j.1469-8137.1981.tb01702.x CrossRefGoogle Scholar
  11. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266 doi: 10.1146/annurev.arplant.57.032905.105159 PubMedCrossRefGoogle Scholar
  12. Barker S, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144–154PubMedGoogle Scholar
  13. Bauer CR, Kellogg CH, Bridgham SD, Lamberti GA (2003) Mycorrhizal colonisation across hydrologic gradients in restored and reference fresh-water wetlands. Wetlands 23:961–968 doi: 10.1672/0277-5212(2003)023[0961:MCAHGI]2.0.CO;2 CrossRefGoogle Scholar
  14. Benfey PN, Scheres B (2000) Root development. Curr Biol 10:R813–R815 doi: 10.1016/S0960-9822(00)00814-9 PubMedCrossRefGoogle Scholar
  15. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465 doi: 10.1146/annurev.arplant.58.032806.103805 PubMedCrossRefGoogle Scholar
  16. Bengough AG (2003) Root growth and function in relation to soil structure, composition, and strength. In: de Kroon H, Visser EJW (eds) Ecological studies, vol. 168: root ecology. Springer-Verlag, Berlin-Heidelberg, pp 151–171Google Scholar
  17. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602 doi: 10.1016/S0092-8674(03)00924-3 PubMedCrossRefGoogle Scholar
  18. Bernston GM (1994) Modelling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? New Phytol 127:483–493 doi: 10.1111/j.1469-8137.1994.tb03966.x CrossRefGoogle Scholar
  19. Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207–215 doi: 10.1111/j.1469-8137.1990.tb00392.x CrossRefGoogle Scholar
  20. Berta G, Tagliasacchi AM, Fusconi A, Gerlero D, Trotta A, Scannerini S (1991) The mitotic cycle in root apical meristems of Allium porrum L. is controlled by the endomycorrhizal fungus Glomus sp. strain E3. Protoplasma 161:12–16 doi: 10.1007/BF01328892 CrossRefGoogle Scholar
  21. Berta G, Trotta A, Fusconi A, Hooker J, Munro M, Atkinson D, Giovannetti M, Marini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera L. Tree Physiol 15:281–293PubMedGoogle Scholar
  22. Berta G, Fusconi A, Hooker J (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser Verlag, Basel, pp 71–86Google Scholar
  23. Berta G, Sampò S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on root morphogenesis. Eur J Plant Pathol 111:279–288 doi: 10.1007/s10658-004-4585-7 CrossRefGoogle Scholar
  24. Bidel L, Renault P, Pagès L, Rivière LM (2000) An improved method to measure spatial variation in root respiration: application to the taproot of a young peach tree Prunus persica. Agronomie 21:179–192 doi: 10.1051/agro:2001116 CrossRefGoogle Scholar
  25. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44 doi: 10.1038/nature03184 PubMedCrossRefGoogle Scholar
  26. Bodelier PLE, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 + oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65:1826–1833PubMedGoogle Scholar
  27. Borisov AY, Danilova TN, Koroleva TA, Kuznetsova EV, Madsen L, Mofett M, Naumkina TS, Nemanki TA, Ovchinnikov ES, Pavlova ZB, Petrova NE, Pinaev AG, Radutoiu S, Rozov SM, Rychagova ST, Shtark OY, Solovov II, Stougaard JS, Tikhonovich IA, Topunov AF, Tsyganov VE, Vasil’chikov AG, Voroshilova VA, Weeden NF, Zhernakov AI, Zhukov VA (2007) Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects. Appl Biochem Microbiol 43:237–243 doi: 10.1134/S0003683807030027 CrossRefGoogle Scholar
  28. Boulet FM, Lambers H (2005) Characterisation of arbuscular mycorrhizal fungi colonisation in cluster roots of Hakea verrucosa F. Muell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant Soil 269:357–367 doi: 10.1007/s11104-004-0908-x CrossRefGoogle Scholar
  29. Braum SM, Helmke PA (1995) White lupin utilizes soil phosphorus that is unavailable to soybean. Plant Soil 176:95–100 doi: 10.1007/BF00017679 CrossRefGoogle Scholar
  30. Bradford MA, Eggers T, Newington JE, Tordoff GM (2007) Soil faunal assemblage composition modifies root in-growth to plant litter patches. Pedobiologia (Jena) 50:505–513 doi: 10.1016/j.pedobi.2006.07.001 CrossRefGoogle Scholar
  31. Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfy PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806PubMedCrossRefGoogle Scholar
  32. Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from paddy fields. Plant Cell Environ 20:1175–1183 doi: 10.1046/j.1365-3040.1997.d01-142.x CrossRefGoogle Scholar
  33. Campbell BD, Grime JP, Mackey JML (1991) A trade-off between scale and precision in resource foraging. Oecologia 87:532–538 doi: 10.1007/BF00320417 CrossRefGoogle Scholar
  34. Cannon WA (1949) A tentative classification of root sytems. Ecology 30:452–458 doi: 10.2307/1932458 CrossRefGoogle Scholar
  35. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett P (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852PubMedCrossRefGoogle Scholar
  36. Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650 doi: 10.1111/j.1365-3040.2005.01310.x CrossRefGoogle Scholar
  37. Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142 doi: 10.1101/gad.9.17.2131 PubMedCrossRefGoogle Scholar
  38. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896 doi: 10.1038/nrg2179 PubMedCrossRefGoogle Scholar
  39. Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260 doi: 10.1146/ CrossRefGoogle Scholar
  40. Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439 doi: 10.1105/tpc.107.053009 PubMedCrossRefGoogle Scholar
  41. Citernesi AS, Vitagliano C, Giovannetti M (1998) Plant growth and root system morphology of Olea europea L. rooted cuttings as influenced by arbuscular mycorrhizas. J Hortic Sci Biotechnol 73:647–654Google Scholar
  42. Clark LH, Harris WH (1981) Observations on the root anatomy of rice (Oryza sativa L.). Am J Bot 68:154–161 doi: 10.2307/2442846 CrossRefGoogle Scholar
  43. Clark LJ, Barraclough PB (1999) Do dicotyledons generate greater maximum axial root growth pressures than monocotyledons? J Exp Bot 50:1263–1266 doi: 10.1093/jexbot/50.336.1263 CrossRefGoogle Scholar
  44. Clark LJ, Whalley WR, Barraclough PB (2003) How do roots penetrate strong soil? Plant Soil 255:93–104 doi: 10.1023/A:1026140122848 CrossRefGoogle Scholar
  45. Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 483–510Google Scholar
  46. Clowes FAL (1981) Cell proliferation in ectotrophic mycorrhizas of Fagus sylvatica. New Phytol 87:547–555 doi: 10.1111/j.1469-8137.1981.tb03225.x CrossRefGoogle Scholar
  47. Colmer TD (2003) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot (Lond) 91:301–309 doi: 10.1093/aob/mcf114 CrossRefGoogle Scholar
  48. Colmer TD, Cox MCH, Voesenek LACJ (2006) Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol 170:767–778 doi: 10.1111/j.1469-8137.2006.01725.x PubMedCrossRefGoogle Scholar
  49. Cooke JC, Lefor MW (1998) The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restor Ecol 6:214–222 doi: 10.1111/j.1526-100X.1998.00628.x CrossRefGoogle Scholar
  50. Cornwell WK, Bedford BL, Chapin CT (2001) Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. Am J Bot 88:1824–1829 doi: 10.2307/3558359 CrossRefGoogle Scholar
  51. Cruz C, Lips SH, Martins-Loucao MA (1995) Uptake of inorganic nitrogen in roots of carob seedlings. Physiol Plant 95:167–175 doi: 10.1111/j.1399-3054.1995.tb00824.x CrossRefGoogle Scholar
  52. Cui M, Caldwell MM (1996a) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches. I. Roots and hyphae exploiting the same soil volume. New Phytol 133:453–460 doi: 10.1111/j.1469-8137.1996.tb01912.x CrossRefGoogle Scholar
  53. Cui M, Caldwell MM (1996b) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches. II. Hyphae exploiting root-free soil. New Phytol 133:461–467 doi: 10.1111/j.1469-8137.1996.tb01913.x CrossRefGoogle Scholar
  54. Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsc HJ, Bothe H (1992) Influence of vesicular-arbuscular mycorrhiza on phytohormone balance in maize (Zea mays L.). J Plant Physiol 141:33–39Google Scholar
  55. de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481 doi: 10.1016/j.tplants.2007.08.012 PubMedCrossRefGoogle Scholar
  56. Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682 doi: 10.1016/j.cub.2007.02.047 PubMedCrossRefGoogle Scholar
  57. Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384 doi: 10.1126/science.1164147 PubMedCrossRefGoogle Scholar
  58. Demchenko NP, Demchenko KN (2001) Resumption of DNA synthesis and cell division in wheat roots as related to lateral root initiation. Russ J Plant Physiol 48:755–763 doi: 10.1023/A:1012552307270 CrossRefGoogle Scholar
  59. Denton MD, Veneklaas EJ, Lambers H (2007) Does phenotypic plasticity in carboxylate exudation differ among rare and widespread Banksia species (Proteaceae)? New Phytol 173:592–599 doi: 10.1111/j.1469-8137.2006.01956.x PubMedCrossRefGoogle Scholar
  60. De Smet I, Vanneste S, Inzé D, Beeckman T (2006a) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887 doi: 10.1007/s11103-005-4547-2 PubMedCrossRefGoogle Scholar
  61. De Smet I, Zhang H, Inzé D, Beeckman T (2006b) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439 doi: 10.1016/j.tplants.2006.07.003 PubMedCrossRefGoogle Scholar
  62. Dexter AR (1987) Mechanics of root growth. Plant Soil 97:401–406 doi: 10.1007/BF02383230 CrossRefGoogle Scholar
  63. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445 doi: 10.1038/nature03543 PubMedCrossRefGoogle Scholar
  64. DiDonato RJ, Arbuckle E, Buker S, Sheets J, Tobar J, Totong R, Grisafi P, Fink GR, Celenza JL (2004) Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation. Plant J 37:340–353 doi: 10.1046/j.1365-313X.2003.01964.x PubMedCrossRefGoogle Scholar
  65. Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:285–292 doi: 10.1111/j.1365-3040.1989.tb01942.x CrossRefGoogle Scholar
  66. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945 doi: 10.1126/science.1153795 PubMedCrossRefGoogle Scholar
  67. Doussan C, Vercambre G, Pagès L (1998) Modelling of the hydraulic architecture of root systems: An integrated approach to water absorption—Distribution of axial and radial conductances in maize. Ann Bot (Lond) 81:225–232 doi: 10.1006/anbo.1997.0541 CrossRefGoogle Scholar
  68. Doussan C, Vercambre G, Pages L (1999) Water uptake by two contrasting root systems (maize, peach tree): results from a model of hydraulic architecture. Agronomie 19:255–263 doi: 10.1051/agro:19990306 CrossRefGoogle Scholar
  69. Doussan C, Pierret A, Garrigues E, Pagès L (2006) Water uptake by plant roots: II–Modelling of water transfer in the soil root-system with explicit account of flow within the root system—Comparison with experiments. Plant Soil 283:101–119 doi: 10.1007/s11104-004-7904-z CrossRefGoogle Scholar
  70. Drew MC, Saker LR (1975) Nutrient supply and the growth of the seminal root system in barley. II- Localised compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only one part of the root system. J Exp Bot 26:79–90 doi: 10.1093/jxb/26.1.79 CrossRefGoogle Scholar
  71. Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794 doi: 10.1073/pnas.0712307105 PubMedCrossRefGoogle Scholar
  72. Dunbabin V (2007) Simulating the role of rooting traits in crop-weed competition. Field Crops Res 104:44–51 doi: 10.1016/j.fcr.2007.03.014 CrossRefGoogle Scholar
  73. Dunbabin V, Diggle AJ, Rengel Z, van Hungten R (2002) Modelling the interactions between water and nutrient uptake and root growth. Plant Soil 239:19–38 doi: 10.1023/A:1014939512104 CrossRefGoogle Scholar
  74. Dunbabin VM, McDermott S, Bengough AG (2006) Upscaling from rhizosphere to whole root system: modelling the effects of phospholipid surfactants on water and nutrient uptake. Plant Soil 283:57–72 doi: 10.1007/s11104-005-0866-y CrossRefGoogle Scholar
  75. Douglas AE (2002) Symbiotic interactions. Oxford University Press, OxfordGoogle Scholar
  76. Drew MC, He C-J, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127 doi: 10.1016/S1360-1385(00)01570-3 PubMedCrossRefGoogle Scholar
  77. Einsmann JC, Jones RH, Pu M, Mitchell RJ (1999) Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J Ecol 87:609–619 doi: 10.1046/j.1365-2745.1999.00376.x CrossRefGoogle Scholar
  78. Eissenstat DM, Yanai RD (2002) Root life span, efficiency and turnover. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 221–238Google Scholar
  79. Esch H, Hundeshagen B, Schneider-Poetsch H, Bothe H (1994) Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and the N2-fixing cyanobacterium Anabaena variabilis. Plant Sci 99:9–16 doi: 10.1016/0168-9452(94)90115-5 CrossRefGoogle Scholar
  80. Evans DE (2003) Aerenchyma formation. New Phytol 161:35–49 doi: 10.1046/j.1469-8137.2003.00907.x CrossRefGoogle Scholar
  81. Fan MS, Bai RQ, Zhao XF, Zhang JH (2007) Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots. J Integr Plant Biol 49:598–604 doi: 10.1111/j.1744-7909.2007.00450.x CrossRefGoogle Scholar
  82. Farley RA, Fitter AH (1999) The response of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol 87:849–859 doi: 10.1046/j.1365-2745.1999.00396.x CrossRefGoogle Scholar
  83. Fieschi M, Alloatti G, Sacco S, Berta G (1992) Cell membrane potential hyperpolarisation in vesicular arbuscular mycorrhizae of Allium porrum L.: a non-nutritional long-distance effect of the fungus. Protoplasma 168:136–140 doi: 10.1007/BF01666259 CrossRefGoogle Scholar
  84. Fitz Gerald JN, Lehti-Shiu MD, Ingram PA, Deak KI, Biesiada T, Malamy JE (2006) Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics 172:485–498 doi: 10.1534/genetics.105.047555 PubMedCrossRefGoogle Scholar
  85. Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell Scientific Publications, Oxford, pp 37–42Google Scholar
  86. Fitter A (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106:61–77Google Scholar
  87. Fitter A (2002) Characteristics and functions of roots systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 15–32Google Scholar
  88. Fitter AH (2004) Magnolioid root-hairs, architecture and mycorrhizal dependency. New Phytol 164:15–16 doi: 10.1111/j.1469-8137.2004.01193.x CrossRefGoogle Scholar
  89. Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems. 2: Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118:383–389 doi: 10.1111/j.1469-8137.1991.tb00019.x CrossRefGoogle Scholar
  90. Forbes PJ, Ellison CH, Hooker JE (1996) The impact of arbuscular mycorrhizal fungi and temperature on root system development. Agronomie 16:617–620 doi: 10.1051/agro:19961004 CrossRefGoogle Scholar
  91. Fourcaud T, Zhang X, Stokes A, Lambers H, Korner C (2008) Plant growth modeling and applications: the increasing importance of plant architecture in growth models. Ann Bot (Lond) 101:1053–1063 doi: 10.1093/aob/mcn050 CrossRefGoogle Scholar
  92. Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494 doi: 10.1105/tpc.106.048538 PubMedCrossRefGoogle Scholar
  93. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168 doi: 10.1046/j.0960-7412.2001.01201.x PubMedCrossRefGoogle Scholar
  94. Fusconi A, Berta G, Tagliasacchi AM, Scannerini S, Trotta A, Gnavi E, De Padova S (1994) Root apical meristems of arbuscular mycorrhizae of Allium porrum L. Environ Exp Bot 43:181–193 doi: 10.1016/0098-8472(94)90037-X CrossRefGoogle Scholar
  95. Fusconi A, Gnavi E, Trotta A, Berta G (1999) Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytol 142:505–516 doi: 10.1046/j.1469-8137.1999.00410.x CrossRefGoogle Scholar
  96. Fusconi A, Tagliasacchi AM, Berta G, Trotta A, Brazzaventre S, Ruberti F, Scannerini S (2000) Root apical meristems of Allium porrum L. as affected by arbuscular mycorrhizae and phosphorus. Protoplasma 214:219–226 doi: 10.1007/BF01279066 CrossRefGoogle Scholar
  97. Fusconi A, Lingua G, Trotta A, Berta G (2005) Effects of arbuscular mycorrhizal colonization and phosphorus application on nuclear ploidy in Allium porrum plants. Mycorrhiza 15:313–321 doi: 10.1007/s00572-004-0338-x PubMedCrossRefGoogle Scholar
  98. Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300 doi: 10.1046/j.1469-8137.2002.00460.x CrossRefGoogle Scholar
  99. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192 doi: 10.1007/s00572-003-0256-3 PubMedCrossRefGoogle Scholar
  100. Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which the phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–124 doi: 10.1007/BF02374754 CrossRefGoogle Scholar
  101. Garthwaite AJ, Steudle E, Colmer TD (2006) Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity. J Exp Bot 57:655–664 doi: 10.1093/jxb/erj055 PubMedCrossRefGoogle Scholar
  102. Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: Results from a geometric simulation model. Plant Soil 218:159–171 doi: 10.1023/A:1014987710937 PubMedCrossRefGoogle Scholar
  103. Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jürgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131:389–400 doi: 10.1242/dev.00926 PubMedCrossRefGoogle Scholar
  104. Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810 doi: 10.1046/j.1365-3040.1999.00441.x CrossRefGoogle Scholar
  105. Giovannetti M, Sbrana C, Avio L (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181 doi: 10.1111/j.1469-8137.2004.01145.x CrossRefGoogle Scholar
  106. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823 doi: 10.1038/nature03610 PubMedCrossRefGoogle Scholar
  107. Grilli-Caiola M (2002) Cycad coralloid roots housing cyanobacteria. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, pp 399–409Google Scholar
  108. Grime JP, Crick JC, Rincon JE (1986) The ecological significance of plasticity. In: Jennings DH, Trewavas AJ (eds) Plasticity in plants. Company of Biologists, Cambridge, pp 5–30Google Scholar
  109. Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386 doi: 10.1105/tpc.105.030841 PubMedCrossRefGoogle Scholar
  110. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  111. Harper JL, Jones M, Hamilton NR (1991) The evolution of roots and the problem of analysing their behaviour. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell Scientific Publications, Oxford, pp 3–24Google Scholar
  112. He C-J, Finlayson SA, Drew MC, Jordan WR, Morgan PW (1996) Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiol 112:1679–1685PubMedGoogle Scholar
  113. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916 doi: 10.1111/j.1365-313X.2005.02575.x PubMedCrossRefGoogle Scholar
  114. Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Van Montagu M, Inzé D, Beeckman T (2004) Transcript profiling of early lateral root initiation. Proc Natl Acad Sci USA 101:5146–5151 doi: 10.1073/pnas.0308702101 PubMedCrossRefGoogle Scholar
  115. Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303 doi: 10.1111/j.1469-8137.2005.01512.x PubMedCrossRefGoogle Scholar
  116. Hishi T (2007) Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions. J For Res 12:126–133 doi: 10.1007/s10310-006-0260-5 CrossRefGoogle Scholar
  117. Hishi T, Takeda H (2005) Life cycles of individual roots in fine root system of Chamaecyparis obtusa Sieb. et Zucc. J For Res 10:181–187 doi: 10.1007/s10310-004-0120-0 CrossRefGoogle Scholar
  118. Hoad SP, Russel G, Lucas ME, Bingham IJ (1992) The management of wheat, barley and oat root systems. Adv Agron 74:193–246 doi: 10.1016/S0065-2113(01)74034-5 CrossRefGoogle Scholar
  119. Hochholdinger F, Woll K, Sauer M, Dembinsky D (2004) Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programs. Ann Bot (Lond) 93:359–368 doi: 10.1093/aob/mch056 CrossRefGoogle Scholar
  120. Hodge A (2001a) Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol 151:725–734 doi: 10.1046/j.0028-646x.2001.00200.x CrossRefGoogle Scholar
  121. Hodge A (2001b) Foraging and the exploitation of soil nutrient patches: in defence of roots. Funct Ecol 15:416 doi: 10.1046/j.1365-2435.2001.00519.x CrossRefGoogle Scholar
  122. Hodge A (2003a) Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonisation. New Phytol 157:303–314 doi: 10.1046/j.1469-8137.2003.00662.x CrossRefGoogle Scholar
  123. Hodge A (2003b) N capture by Plantago lanceolata and Brassica napus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. J Exp Bot 54:2331–2342 doi: 10.1093/jxb/erg249 PubMedCrossRefGoogle Scholar
  124. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24 doi: 10.1111/j.1469-8137.2004.01015.x CrossRefGoogle Scholar
  125. Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57:401–411 doi: 10.1093/jxb/eri280 PubMedCrossRefGoogle Scholar
  126. Hodge A, Alexander IJ, Gooday GW (1995) Chitinolytic enzymes of pathogenic and ectomycorrhizal fungi. Mycol Res 99:934–941 doi: 10.1016/S0953-7562(09)80752-1 CrossRefGoogle Scholar
  127. Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1998) Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol 139:479–494 doi: 10.1046/j.1469-8137.1998.00216.x CrossRefGoogle Scholar
  128. Hodge A, Robinson D, Griffiths BS, Fitter AH (1999a) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820 doi: 10.1046/j.1365-3040.1999.00454.x CrossRefGoogle Scholar
  129. Hodge A, Robinson D, Griffiths BS, Fitter AH (1999b) Nitrogen capture by plants grown in N-rich organic patches of contrasting size and strength. J Exp Bot 50:1243–1252 doi: 10.1093/jexbot/50.336.1243 CrossRefGoogle Scholar
  130. Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1999c) Plant, soil fauna and microbial responses to N-rich organic patches of contrasting temporal availability. Soil Biol Biochem 31:1517–1530 doi: 10.1016/S0038-0717(99)00070-X CrossRefGoogle Scholar
  131. Hodge A, Robinson D, Fitter AH (2000a) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308 doi: 10.1016/S1360-1385(00)01656-3 PubMedCrossRefGoogle Scholar
  132. Hodge A, Robinson D, Fitter AH (2000b) An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. New Phytol 145:575–584 doi: 10.1046/j.1469-8137.2000.00602.x CrossRefGoogle Scholar
  133. Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000c) Spatial and physical heterogeneity of N supply from soil does not influence N capture by two grass species. Funct Ecol 14:575–584 doi: 10.1046/j.1365-2435.2000.t01-1-00470.x CrossRefGoogle Scholar
  134. Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000d) Competition between roots and micro-organisms for nutrients from nitrogen-rich patches of varying complexity. J Ecol 88:150–164 doi: 10.1046/j.1365-2745.2000.00434.x CrossRefGoogle Scholar
  135. Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000e) Plant N capture and microfaunal dynamics from decomposing grass and earthworm residues in soil. Soil Biol Biochem 32:1763–1772 doi: 10.1016/S0038-0717(00)00095-X CrossRefGoogle Scholar
  136. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299 doi: 10.1038/35095041 PubMedCrossRefGoogle Scholar
  137. Insalud N, Bell RW, Colmer TC, Rerkasem B (2006) Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture. Ann Bot (Lond) 98:995–1004 doi: 10.1093/aob/mcl194 CrossRefGoogle Scholar
  138. Ivanchenko MG, Coffeen WC, Lomax TL, Dubrovsky JG (2006) Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle. Plant J 46:436–447 doi: 10.1111/j.1365-313X.2006.02702.x PubMedCrossRefGoogle Scholar
  139. Jackson M, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287 doi: 10.1111/j.1438-8677.1999.tb00253.x CrossRefGoogle Scholar
  140. Jackson RB, Manwaring JH, Caldwell MM (1990) Rapid physiological adjustment of roots to localized soil enrichment. Nature 344:58–60 doi: 10.1038/344058a0 PubMedCrossRefGoogle Scholar
  141. Jackson RB, Mooney HA, Schulze E-D (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–7366 doi: 10.1073/pnas.94.14.7362 PubMedCrossRefGoogle Scholar
  142. Jaillard B, Schneider A, Mollier A, Pellerin S (2000) Modélisation du prélèvement minéral par les plantes fondée sur le fonctionnement bio-physico-chimique de la rhizosphère. In: Maillard P, Bonhomme R (eds) Fonctionnement des peuplements végétaux sous contraintes environnementales. Coll. INRA 93:253-287Google Scholar
  143. Javaux M, Schroder T, Vanderborght J (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 7:1079–1088 doi: 10.2136/vzj2007.0115 CrossRefGoogle Scholar
  144. Jenik PD, Gillmor CS, Lukowitz W (2007) Embryonic patterning in Arabidopsis thaliana. Annu Rev Cell Dev Biol 23:207–236 doi: 10.1146/annurev.cellbio.22.011105.102609 PubMedCrossRefGoogle Scholar
  145. Johnson JF, Allan DL, Vance CP, Weiblen G (1996) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Plant Physiol 112:19–30 doi: 10.1104/pp.112.1.31 PubMedCrossRefGoogle Scholar
  146. Jones DL (1998) Organic acids in the rhizosphere- a critical review. Plant Soil 205:25–44 doi: 10.1023/A:1004356007312 CrossRefGoogle Scholar
  147. Jones D, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480 doi: 10.1111/j.1469-8137.2004.01130.x CrossRefGoogle Scholar
  148. Justin SHFW, Armstrong W (1991) Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa). New Phytol 118:49–62 doi: 10.1111/j.1469-8137.1991.tb00564.x CrossRefGoogle Scholar
  149. Kaldorf M, Ludwig-Müller J (2000) AM fungi affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67 doi: 10.1034/j.1399-3054.2000.100109.x CrossRefGoogle Scholar
  150. Kaneyasu T, Kobayashi A, Nakayama M, Fujii N, Takahashi H, Miyazawa Y (2007) Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J Exp Bot 58:1143–1150 doi: 10.1093/jxb/erl274 PubMedCrossRefGoogle Scholar
  151. Kawashima K, Suganuma N, Tamaoki M, Kouchi H (2001) Two types of pea leghemoglobin genes showing different O2-binding affinities and distinct patterns of spatial expression in nodules. Plant Physiol 125:641–651 doi: 10.1104/pp.125.2.641 PubMedCrossRefGoogle Scholar
  152. Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ 21:467–478 doi: 10.1046/j.1365-3040.1998.00300.x CrossRefGoogle Scholar
  153. Kembel SW, Cahill JF Jr (2005) Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade-offs. Am Nat 166:216–230 doi: 10.1086/431287 PubMedCrossRefGoogle Scholar
  154. King JJ, Stimart DP, Fisher RH, Bleecker AB (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7:2023–2037PubMedCrossRefGoogle Scholar
  155. Kirk GJD (2003) Rice root properties for internal aeration and efficient nutrient acquisition in submerged soils. New Phytol 159:185–194 doi: 10.1046/j.1469-8137.2003.00793.x CrossRefGoogle Scholar
  156. Kirk GJD, Van DL (1997) Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytol 135:191–200 doi: 10.1046/j.1469-8137.1997.00640.x CrossRefGoogle Scholar
  157. Klepper B (1992) Development and growth of crop root systems. Adv Soil Sci 19:1–25Google Scholar
  158. Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104:4724–4729 doi: 10.1073/pnas.0609929104 PubMedCrossRefGoogle Scholar
  159. Kutschera L (1960) Wurzelatlas mitleleuropaïsher Ackerunkräuter und Kulturpflanzen. Verlag Pub., Franckfurt am MainGoogle Scholar
  160. Laan P, Smolders A, Blom CWPM, Armstrong W (1989) The relative roles of internal aeration, radical oxygen losses, iron exclusion and nutrient balances in flood-tolerance of Rumex species. Acta Bot Neer 38:131–145Google Scholar
  161. Lamont B (1974) The biology of dauciform roots in the sedge Cyathochaete avenacea. New Phytol 73:985–996 doi: 10.1111/j.1469-8137.1974.tb01327.x CrossRefGoogle Scholar
  162. Lamont B (2003) Structure, ecology and physiology of root clusters–a review. Plant Soil 248:1–19 doi: 10.1023/A:1022314613217 CrossRefGoogle Scholar
  163. Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900 doi: 10.1105/tpc.107.055863 PubMedCrossRefGoogle Scholar
  164. Larkin RP (1995) Effects of infection by Pythium spp. on root system morphology of Alfalfa seedlings. Phytopathol 85:430–435 doi: 10.1094/Phyto-85-430 CrossRefGoogle Scholar
  165. Laskov C, Horn O, Hupfer M (2006) Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus. Aquat Bot 84:333–340 doi: 10.1016/j.aquabot.2005.12.005 CrossRefGoogle Scholar
  166. Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol 47:788–792 doi: 10.1093/pcp/pcj043 PubMedCrossRefGoogle Scholar
  167. Lazof D, Rufty TW, Redingbaugh MG (1992) Localization of nitrate absorption and translocation within morphological regions of corn roots. Plant Physiol 100:1251–1258 doi: 10.1104/pp.100.3.1251 PubMedCrossRefGoogle Scholar
  168. Lecompte F, Ozier-Lafontaine H, Pagès L (2001) The relationships between static and dynamic variables in the description of root growth. Consequences for field interpretation of rooting variability. Plant Soil 236:19–31 doi: 10.1023/A:1011924529885 CrossRefGoogle Scholar
  169. Lecompte F, Pagès L (2007) Apical diameter and branching density affect lateral root elongation rates in banana. Environ Exp Bot 59:243–251 doi: 10.1016/j.envexpbot.2006.01.002 CrossRefGoogle Scholar
  170. Lemanceau P, Offre P, Mougel C, Gamalero E, Dessaux Y, Moënne-Loccoz Y, Berta G (2005) Microbial ecology of the rhizosphere. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbiological methods for assessing soil quality. CABI Publishing, Wallingford, pp 228–230Google Scholar
  171. Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207 doi: 10.1111/j.1469-8137.2008.02630.x PubMedCrossRefGoogle Scholar
  172. Le Quéré A, Schützendübel A, Rajashekar B, Canbäck B, Hedh J, Erland S, Johansson T, Anders Tunlid A (2004) Divergence in gene expression related to variation in host specificity of an ectomycorrhizal fungus. Mol Ecol 12:3809–3819 doi: 10.1111/j.1365-294X.2004.02369.x CrossRefGoogle Scholar
  173. Leyser O (2006) Dynamic integration of auxin transport and signalling. Curr Biol 16:R424–R433 doi: 10.1016/j.cub.2006.05.014 PubMedCrossRefGoogle Scholar
  174. Lloret PG, Casero PJ (2002) Lateral root initiation. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 127–156Google Scholar
  175. Lingua G, Sgorbati S, Citterio A, Fusconi A, Trotta A, Gnavi E, Berta G (1999) Arbuscular mycorrhizal colonization delays nucleus senescence in leek root cortical cells. New Phytol 141:161–169 doi: 10.1046/j.1469-8137.1999.00328.x CrossRefGoogle Scholar
  176. Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400 doi: 10.1023/A:1015255030047 PubMedCrossRefGoogle Scholar
  177. Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104 doi: 10.1105/tpc.104.029272 PubMedCrossRefGoogle Scholar
  178. Lorenzen B, Brix H, Mendelssohn IA, McKee KL, Miao SL (2001) Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability. Aquat Bot 70:117–133 doi: 10.1016/S0304-3770(01)00155-3 CrossRefGoogle Scholar
  179. Loudet O, Gaudon V, Trubuil A, Daniel-Vedele F (2005) Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor Appl Genet 110:742–753 doi: 10.1007/s00122-004-1900-9 PubMedCrossRefGoogle Scholar
  180. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512 doi: 10.1071/BT06118 CrossRefGoogle Scholar
  181. Lynch JP, Brown KM (2001) Topsoil foraging–an architectural adaptation of plants to low phosphorus avaibility. Plant Soil 237:225–237 doi: 10.1023/A:1013324727040 CrossRefGoogle Scholar
  182. Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77 doi: 10.1111/j.1365-3040.2005.01306.x PubMedCrossRefGoogle Scholar
  183. Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597 doi: 10.1105/tpc.010354 PubMedCrossRefGoogle Scholar
  184. Masle J (2002) High soil strength: mechanical forces at play on root morphogenesis. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 807–820Google Scholar
  185. Materechera SA, Dexter AR, Alston AM (1991) Penetration of very strong soils by seedling roots of different plant species. Plant Soil 135:31–41 doi: 10.1007/BF00014776 CrossRefGoogle Scholar
  186. Materechera SA, Alston AM, Kirby JM, Dexter AR (1992) Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant Soil 144:297–303 doi: 10.1007/BF00012888 CrossRefGoogle Scholar
  187. McMichael BL, Burke JJ (2002) Temperature effects on root growth. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 717–728Google Scholar
  188. McDonald MP, Galwey NW, Colmer TD (2001) Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have relatively high porosity and a barrier to radical oxygen loss. Plant Cell Environ 24:585–596 doi: 10.1046/j.0016-8025.2001.00707.x CrossRefGoogle Scholar
  189. McDonald MP, Galwey NW, Colmer TD (2002) Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ 25:441–451 doi: 10.1046/j.0016-8025.2001.00817.x CrossRefGoogle Scholar
  190. Mendoza R, Escudero V, Garcia I (2005) Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline-sodic soil. Plant Soil 275:305–315 doi: 10.1007/s11104-005-2501-3 CrossRefGoogle Scholar
  191. Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124:609–614 doi: 10.1104/pp.124.2.609 PubMedCrossRefGoogle Scholar
  192. Mistrik I, Mistrikova I (1995) Uptake, transport and metabolim of phosphate by individual roots of Zea mays L. Biologia (Bratisl) 50:419–426Google Scholar
  193. Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18:700–714 doi: 10.1101/gad.1187704 PubMedCrossRefGoogle Scholar
  194. Nardon P, Charles H (2002) Morphological aspects of symbiosis. In: Seckbach J (ed) Symbiosis: Mechanisms and Model Systems. Kluwer Academic Publishers, Dordrecht, pp 13–44Google Scholar
  195. Navara J (1987) Participation of individual root types in water uptake by maize seedlings. Biologia (Bratisl) 42:17–26Google Scholar
  196. Neumann G, Martinoia E (2002) Cluster roots–an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167 doi: 10.1016/S1360-1385(02)02241-0 PubMedCrossRefGoogle Scholar
  197. Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382 doi: 10.1007/s004250050572 CrossRefGoogle Scholar
  198. Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411 doi: 10.1016/S0169-5347(00)89157-0 CrossRefGoogle Scholar
  199. Noelle W (1910) Studin zur vergleighenden anatomie und morphologie der koniferenwuzeIn mit rücksicht auf die systematik. Botanik. Zeit 68:169–266Google Scholar
  200. Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073 doi: 10.1017/S0953756299002191 CrossRefGoogle Scholar
  201. Norman JR, Atkinson D, Hooker JE (1996) Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198 doi: 10.1007/BF02257524 CrossRefGoogle Scholar
  202. Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol 94:59–66 doi: 10.1104/pp.94.1.59 PubMedCrossRefGoogle Scholar
  203. Nowack B, Mayer KU, Oswald SE, van Beinum W, Appelo CAJ, Jacques D, Seutjens P, Gérard F, Jaillard B, Schnepf A, Roose T (2006) Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285:305–321 doi: 10.1007/s11104-006-9017-3 CrossRefGoogle Scholar
  204. Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959–2968 doi: 10.1242/dev.006296 PubMedCrossRefGoogle Scholar
  205. Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207 doi: 10.1111/j.1365-313X.2005.02522.x PubMedCrossRefGoogle Scholar
  206. Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root ystem architecture. Annu Rev Plant Biol 58:93–113 doi: 10.1146/annurev.arplant.58.032806.104006 PubMedCrossRefGoogle Scholar
  207. Pagès L (2002) Modeling root system architecture. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 359–382Google Scholar
  208. Pagès L, Doussan C, Vercambre G (2000) An introduction on below ground environment and ressource acquisition with special reference on trees—Simulation models should include plant structure and function. Ann Sci 57:513–520 doi: 10.1051/forest:2000138 CrossRefGoogle Scholar
  209. Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177 doi: 10.1016/j.tplants.2005.02.009 PubMedCrossRefGoogle Scholar
  210. Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306 doi: 10.1016/S0168-9525(03)00117-3 PubMedCrossRefGoogle Scholar
  211. Parizot B, Laplaze L, Ricaud L, Boucheron-Dubuisson E, Bayle V, Bonke M, De Smet I, Poethig SR, Helariutta Y, Haseloff J, Chriqui D, Beeckman T, Nussaume L (2008) Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146:140–148 doi: 10.1104/pp.107.107870 PubMedCrossRefGoogle Scholar
  212. Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406 doi: 10.1046/j.1365-313x.2001.00970.x PubMedCrossRefGoogle Scholar
  213. Pellerin S (1993) Rate of differentiation and emergence of nodal maize roots. Plant Soil 148:155–161 doi: 10.1007/BF00012853 CrossRefGoogle Scholar
  214. Pellerin S, Tabourel F (1995) Length of the apical unbranched zone of maize axile roots: its relationship to root elongation rate. Environ Exp Bot 35:193–200 doi: 10.1016/0098-8472(94)00043-5 CrossRefGoogle Scholar
  215. Personeni E, Nguyen C, Marchal P, Pagès L (2007) Experimental evaluation of an efflux-influx model of C exudation by individual apical root segments. J Exp Bot 58:2091–2099 doi: 10.1093/jxb/erm065 PubMedCrossRefGoogle Scholar
  216. Pierret A, Moran CJ, Pankurst CE (1999) Differentiation of soil properties related to the spatial association of wheat roots and soil macropores. Plant Soil 211:51–58 doi: 10.1023/A:1004490800536 CrossRefGoogle Scholar
  217. Pierret A, Moran CJ, Doussan C (2005) Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol 166:967–980 doi: 10.1111/j.1469-8137.2005.01389.x PubMedCrossRefGoogle Scholar
  218. Pierret A, Doussan C, Capowiez Y, Bastardie F, Pagès L (2007) Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J 6:269–281 doi: 10.2136/vzj2006.0067 CrossRefGoogle Scholar
  219. Playsted CWS, Johnston M, Ramage CM, Edwards DG, Cawthray GR, Lambers H (2006) Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol 170:491–500 doi: 10.1111/j.1469-8137.2006.01697.x PubMedCrossRefGoogle Scholar
  220. Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125:575–580 doi: 10.1111/j.1469-8137.1993.tb03905.x CrossRefGoogle Scholar
  221. Pritchard SG, Strand AE (2008) Can you believe what you see? Reconciling minirhizotron and isotopically derived estimates of fine root longevity. New Phytol 177:287–291PubMedGoogle Scholar
  222. Purnell HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust J Bot 8:38–50 doi: 10.1071/BT9600038 CrossRefGoogle Scholar
  223. Qin G, Gu H, Zhao Y, Ma Z, Shi G, Yang Y, Pichersky E, Chen H, Liu M, Chen Z, Qu LJ (2005) An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17:2693–2704 doi: 10.1105/tpc.105.034959 PubMedCrossRefGoogle Scholar
  224. Ranathuge K, Steudle E, Lafitte R (2003) Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta 217:193–205Google Scholar
  225. Rasse DP, Smucker AJM (1998) Root recolonization of previous root channels in corn and alfalfa rotations. Plant Soil 204:203–212 doi: 10.1023/A:1004343122448 CrossRefGoogle Scholar
  226. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance. New Phytol 157:475–492 doi: 10.1046/j.1469-8137.2003.00704.x CrossRefGoogle Scholar
  227. Reddy KR, Patrick WH Jr, Lindau CW (1989) Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnol Oceanogr 34:1004–1013Google Scholar
  228. Reynolds HL, d’Antonio C (1996) The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion. Plant Soil 185:75–97 doi: 10.1007/BF02257566 CrossRefGoogle Scholar
  229. Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54 doi: 10.1105/tpc.105.037796 PubMedCrossRefGoogle Scholar
  230. Robinson D (1991) Roots and ressource fluxes in plants and communities. In: Atkinson D (ed) Plant root growth: an ecological perspective. Special publication of the British ecological society n°10. Blackwell Scientific Pub., London, pp 103–130Google Scholar
  231. Robinson D (2001) Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil 232:41–50 doi: 10.1023/A:1010377818094 CrossRefGoogle Scholar
  232. Robinson D, Hodge A, Griffiths BS, Fitter AH (1999) Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proc R Soc Lond B Biol Sci 265:431–435Google Scholar
  233. Roelofs RFR, Rengel Z, Cawthray GR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant Cell Environ 24:891–903 doi: 10.1046/j.1365-3040.2001.00741.x CrossRefGoogle Scholar
  234. Rubio G, Oesterheld M, Alvarez CR, Lavado RS (1997) Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics. Oecologia 112:150–155 doi: 10.1007/s004420050294 CrossRefGoogle Scholar
  235. Ruzicka K, Ljung K, Vanneste S, Podhorsk’a R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212 doi: 10.1105/tpc.107.052126 PubMedCrossRefGoogle Scholar
  236. Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358 doi: 10.1101/gad.252503 PubMedCrossRefGoogle Scholar
  237. Saleque MA, Kirk GJD (1995) Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol 129:325–336 doi: 10.1111/j.1469-8137.1995.tb04303.x CrossRefGoogle Scholar
  238. Sampò S, Avidano L, Berta G (2007) Morphogenetic effects induced by pathogenic and non pathogenic Rhizoctonia solani Kühn strains on tomato roots. Caryologia 60:1–20Google Scholar
  239. Sadowsky MJ (2005) Soil stress factors influencing symbiotic nitrogen fixation. In: Wernerand D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, The Netherlands, pp 89–10CrossRefGoogle Scholar
  240. Sarquis JI, Jordon WR, Morgan PW (1991) Ethylene evolution from maize (Zea mays L.) seedling roots and shoots in response to mechanical impedance. Plant Physiol 96:1171–1177 doi: 10.1104/pp.96.4.1171 PubMedCrossRefGoogle Scholar
  241. Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Ann Bot (Lond) 67:135–141Google Scholar
  242. Schenk HJ, Jackson RB (2002a) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494 doi: 10.1046/j.1365-2745.2002.00682.x CrossRefGoogle Scholar
  243. Schenk HJ, Jackson RB (2002b) The global biogeography of roots. Ecol Monogr 73:311–328CrossRefGoogle Scholar
  244. Schnepf A, Roose T (2006) Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytol 171:669–682PubMedGoogle Scholar
  245. Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693 doi: 10.1104/pp.116.2.687 PubMedCrossRefGoogle Scholar
  246. Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125 doi: 10.1007/s11104-004-2725-7 CrossRefGoogle Scholar
  247. Shane MW, De Vos M, De Roock S, Lambers H (2003) Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant Cell Environ 26:265–273 doi: 10.1046/j.1365-3040.2003.00957.x CrossRefGoogle Scholar
  248. Shane MW, Dixon KW, Lambers H (2005) The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). New Phytol 165:887–898 doi: 10.1111/j.1469-8137.2004.01283.x PubMedCrossRefGoogle Scholar
  249. Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized “dauciform” roots of Cyperaceae are structurally distinct, but functionally analogous with “cluster” roots. Plant Cell Environ 29:1989–1999 doi: 10.1111/j.1365-3040.2006.01574.x PubMedCrossRefGoogle Scholar
  250. Shannon RD, White JR (1994) A three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemisty 27:35–60Google Scholar
  251. Shannon RD, White JR, Lawson JE, Gilmour BS (1996) Methane efflux from emergent vegetation in peatlands. J Ecol 84:239–246 doi: 10.2307/2261359 CrossRefGoogle Scholar
  252. Shaul-Keinan O, Gadkal V, Ginzberg I, Grunzweig JM, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Arzmon N, Ben-Tal Y, Kapulnik Y (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154:501–507 doi: 10.1046/j.1469-8137.2002.00388.x CrossRefGoogle Scholar
  253. Signora L, De Smet I, Foyer CH, Zhang HM (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662 doi: 10.1046/j.1365-313x.2001.01185.x PubMedCrossRefGoogle Scholar
  254. Singh MB, Bhalla PL (2006) Plant stem cells carve their own niche. Trends Plant Sci 11:241–246 doi: 10.1016/j.tplants.2006.03.004 PubMedCrossRefGoogle Scholar
  255. Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86:1060–1064 doi: 10.1046/j.1365-2745.1998.00326.x CrossRefGoogle Scholar
  256. Smith FA (2000) Measuring the influence of mycorrhizas. New Phytol 148:4–6CrossRefGoogle Scholar
  257. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd Edn. Academic Press, LondonGoogle Scholar
  258. Smits AJM, Laan P, Thier RH, van der Velde G (1990) Root aerenchyma, oxygen leakage patterns and alcoholic fermentation ability of the roots of some nymphaeid and isoetid macrophytes in relation to sediment type of their habitat. Aquat Bot 38:3–17 doi: 10.1016/0304-3770(90)90095-3 CrossRefGoogle Scholar
  259. Somma F, Hopmans JW, Clausnitzer V (1998) Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake. Plant Soil 202:281–293 doi: 10.1023/A:1004378602378 CrossRefGoogle Scholar
  260. Šraj-Kržič N, Pongrac P, Klemenc M, Kladnik A, Regvar M, Gaberščik A (2006) Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:331–336 doi: 10.1016/j.aquabot.2006.07.001 CrossRefGoogle Scholar
  261. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627 doi: 10.1105/tpc.104.026690 PubMedCrossRefGoogle Scholar
  262. Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242 doi: 10.1105/tpc.105.033365 PubMedCrossRefGoogle Scholar
  263. Striker GG, Insausti P, Grimoldi AA, Vega AS (2007) Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant Cell Environ 30:580–589 doi: 10.1111/j.1365-3040.2007.01639.x PubMedCrossRefGoogle Scholar
  264. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Laurent Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796 doi: 10.1038/ng2041 PubMedCrossRefGoogle Scholar
  265. Swarup R, Bennett M (2003) Auxin transport: the fountain of life in plants? Dev Cell 5:824–826 doi: 10.1016/S1534-5807(03)00370-8 PubMedCrossRefGoogle Scholar
  266. Tardieu F, Katerji N (1991) Plant-response to the soil-water reserve: consequences of the root-system environment. Irrig Sci 12:145–152 doi: 10.1007/BF00192286 CrossRefGoogle Scholar
  267. Tatsumi J, Yamauchi A, Kono Y (1989) Fractal analysis of plant root systems. Ann Bot (Lond) 64:499–503Google Scholar
  268. Thaler P, Pagès L (1999) Why are laterals less affected than main axes by homogeneous unfavourable physical conditions? A model-based hypothesis. Plant Soil 217:151–157 doi: 10.1023/A:1004677128533 CrossRefGoogle Scholar
  269. Thomson CJ, Colmer TD, Watkins I, Greenway H (1992) Tolerance of wheat (Triticum aestivum cvs. Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Phytol 120:335–344 doi: 10.1111/j.1469-8137.1992.tb01073.x CrossRefGoogle Scholar
  270. Tisserant B, Schellenbaum L, Gianinazzi-Pearson V, Gianinazzi S, Berta G (1992) Influence of infection by an endomycorrhizal fungus on root development and architecture in Platanus acerifolia. Allionia 30:173–183Google Scholar
  271. Tisserant B, Gianinazzi S, Gianinazzi-Pearson V (1996) Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia. Can J Bot 74:1947–1955 doi: 10.1139/b96-233 CrossRefGoogle Scholar
  272. Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29–35 doi: 10.1023/A:1026430019738 CrossRefGoogle Scholar
  273. Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soilborne pathogen Phytophthora nicotianae var parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209 doi: 10.1007/BF02257525 CrossRefGoogle Scholar
  274. Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712 doi: 10.1023/A:1014897607670 PubMedCrossRefGoogle Scholar
  275. Vanneste S, De Rybel B, Beemster GT, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inzé D, Fukaki H, Beeckman T (2005) Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17:3035–3050 doi: 10.1105/tpc.105.035493 PubMedCrossRefGoogle Scholar
  276. Van Noordwijk M, Mulia R (2002) Functional branch analysis as tool for fractal scaling above and belowground trees for their additive and non-additive properties. Ecol Modell 149:41–51 doi: 10.1016/S0304-3800(01)00513-0 CrossRefGoogle Scholar
  277. van Vuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178:185–192 doi: 10.1007/BF00011582 CrossRefGoogle Scholar
  278. Van Bodegom P, Goudriaan J, Leffelaar P (2001) A mechanistic model on methane oxidation in a rice rhizosphere. Biogeochemistry 55:145–177 doi: 10.1023/A:1010640515283 CrossRefGoogle Scholar
  279. Varney GT, McCully ME (1991a) The branch roots of Zea: I–First order branches, their number, sizes and division into classes. Ann Bot (Lond) 67:357–364Google Scholar
  280. Varney GT, McCully ME (1991b) The branch root of Zea. II. Developmental loss of the apical meristem in field grown roots. New Phytol 118:535–546 doi: 10.1111/j.1469-8137.1991.tb00993.x CrossRefGoogle Scholar
  281. Vercambre G, Doussan C, Pagès L, Habib R, Pierret A (2002) Influence of xylem development on axial hydraulic conductance within Prunus root systems. Trees Struct Funct 16:479–487Google Scholar
  282. Vercambre G, Pagès L, Doussan C, Habib R (2003) Architectural analysis and synthesis of the plum tree root system in orchard using a quantitative modelling approach. Plant Soil 251:1–11 doi: 10.1023/A:1022961513239 CrossRefGoogle Scholar
  283. Vierheilig H (2004) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J Plant Physiol 161:339–341 doi: 10.1078/0176-1617-01097 PubMedCrossRefGoogle Scholar
  284. Vierheilig H, Alt M, Mohr U, Boller T, Weimken A (1994) Ethylene biosynthesis and α-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. Plant Physiol 143:337–343Google Scholar
  285. Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514 doi: 10.1046/j.1365-3059.2000.00473.x CrossRefGoogle Scholar
  286. Visser EJW, Bögemann GM (2006) Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene. New Phytol 171:305–314 doi: 10.1111/j.1469-8137.2006.01764.x PubMedCrossRefGoogle Scholar
  287. Visser EJW, Colmer TD, Blom CWPM, Voesenek CJ (2000) Changes in growth, porosity, and radical oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245 doi: 10.1046/j.1365-3040.2000.00628.x CrossRefGoogle Scholar
  288. Voesenek LACJ, Armstrong W, Bogemann GM, McDonald MP, Colmer TD (1999) A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to the waterlogging intolerance of Brassica napus. Aust J Plant Physiol 26:87–93CrossRefGoogle Scholar
  289. Wahid PA (2000) A system of classification of woody perennials based on their root activity patterns. Agrofor Syst 49:123–130 doi: 10.1023/A:1006309927504 CrossRefGoogle Scholar
  290. Waisel Y, Eshel A (1992) Differences in ion uptake among roots of various types. J Plant Nutr 15:945–958 doi: 10.1080/01904169209364373 CrossRefGoogle Scholar
  291. Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutr Cycl Agroecosyst 58:349–356 doi: 10.1023/A:1009879610785 CrossRefGoogle Scholar
  292. Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Crit Rev Plant Sci 25:279–301 doi: 10.1080/07352680600709917 CrossRefGoogle Scholar
  293. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216 doi: 10.1105/tpc.105.033076 PubMedCrossRefGoogle Scholar
  294. Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of Lupinus albus L. grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120:705–716 doi: 10.1104/pp.120.3.705 PubMedCrossRefGoogle Scholar
  295. Weaver JE (1926) Root development of field crops. McGraw-Hill, New York PubGoogle Scholar
  296. Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E (2006a) Isoflavonoid exudation from white lupin is influenced by phosphate supply, root type and cluster-root stage. New Phytol 171:657–668PubMedGoogle Scholar
  297. Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E (2006b) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29:919–927 doi: 10.1111/j.1365-3040.2005.01473.x PubMedCrossRefGoogle Scholar
  298. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550 doi: 10.1105/tpc.014928 PubMedCrossRefGoogle Scholar
  299. Whalley WR, Dexter AR (1993) The maximum axial growth pressure of roots of spring and autumn cultivars of lupin. Plant Soil 157:313–318 doi: 10.1007/BF00011059 CrossRefGoogle Scholar
  300. Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795 doi: 10.1038/364794a0 CrossRefGoogle Scholar
  301. Wu L, McGechan MB, Watson CA, Baddeley JA (2005) Developing existing plant root system architecture models to meet future, agricultural challenges. Adv Agron 85:181–219 doi: 10.1016/S0065-2113(04)85004-1 CrossRefGoogle Scholar
  302. Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167–170 doi: 10.1038/nature00998 PubMedCrossRefGoogle Scholar
  303. Yamazaki K, Nakamoto T (1983) Primary root formation in growing shoots of several cereal crops. Jpn J Crop Sci 52:342–348Google Scholar
  304. Yavitt JB, Lang GE (1990) Methane production in contrasting wetland sites: response to organic-chemical components of peat and to sulfate reduction. Geomicrobiol J 8:27–46 doi: 10.1080/01490459009377876 CrossRefGoogle Scholar
  305. Zaïd EH, Arahou M, Diem HG, Morabet RE (2003) Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species? Plant Soil 248:229–235 doi: 10.1023/A:1022320227637 CrossRefGoogle Scholar
  306. Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409 doi: 10.1126/science.279.5349.407 PubMedCrossRefGoogle Scholar
  307. Zhang H, Rong H, Pilbeam D (2007) Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58:2329–2338 doi: 10.1093/jxb/erm114 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Angela Hodge
    • 1
  • Graziella Berta
    • 2
  • Claude Doussan
    • 3
  • Francisco Merchan
    • 4
  • Martin Crespi
    • 5
  1. 1.Department of BiologyUniversity of York, YorkUK
  2. 2.Dipartimento di Scienze dell’Ambiente e della VitaUniversità del Piemonte OrientaleAlessandriaItaly
  3. 3.UMR 1114 EMMAH INRA/UAPV Domaine Saint-PaulAvignon Cedex 9France
  4. 4.Departamento de Microbiología y Parasitología, Facultad de FarmaciaUniversidad de SevillaSevillaEspaña
  5. 5.Institut des Sciences du Végétal (ISV)CNRSGif-sur-YvetteFrance

Personalised recommendations