Advertisement

Plant and Soil

, Volume 322, Issue 1–2, pp 197–207 | Cite as

Characterization of bacterial endophytes of sweet potato plants

  • Zareen Khan
  • Sharon L. DotyEmail author
Regular Article

Abstract

Endophytic bacteria associated with sweet potato plants (Ipomoea batatas (L.) Lam.) were isolated, identified and tested for their ability to fix nitrogen, produce indole acetic acid (IAA), and exhibit stress tolerance. Eleven different strains belonging to the genera, Enterobacter, Rahnella, Rhodanobacter, Pseudomonas, Stenotrophomonas, Xanthomonas and Phyllobacterium, were identified. Four strains were shown to produce IAA (a plant growth hormone) and one strain showed the ability to grow in nitrogen free medium and had the nitrogenase subunit gene, nifH. To determine if IAA production by the endophytes had any role in protecting the cells against adverse conditions, different stress tests were conducted. The IAA producer grew well in the presence of some antibiotics, UV and cold treatments but the response to pH, osmotic shock, thermal and oxidative treatments was the same for both the IAA producer and the no IAA producer. To determine if IAA produced by the strains was biologically relevant to plants, cuttings of poplar were inoculated with the highest IAA producing strain. The inoculated cuttings produced roots sooner and grew more rapidly than uninoculated cuttings. These studies indicate that endophytes of sweet potato plants are beneficial to plant growth.

Keywords

Ipomoea batatas Sweet potato Plant-microbe interaction Indole acetic acid (IAA) Nitrogen fixation Stress Plant growth promotion 

Notes

Acknowledgements

We thank undergraduate student helper Amanda Thornton for helping with the isolation of endophytes and the United States Department of Agriculture (USDA) for funding this project (grant no: 58-3148-5159)

References

  1. Adriana R, Holguin G, Glick BR et al (2001) Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol 35(2):181–187. doi: 10.1111/j.1574-6941.2001.tb00802.x CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  3. Ausubel F, Brent R, Kingston RE et al (1995) Short protocols in molecular biology. E d. John Wiley & Sons, Inc, New YorkGoogle Scholar
  4. Bangera MG, Thomashow LS (1996) Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2–87. Mol Plant Microbe Interact 9:83–90PubMedGoogle Scholar
  5. Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24. doi: 10.1023/A:1004246904803 CrossRefGoogle Scholar
  6. Benhamou N, Kloepper JW, Quadt-Hallman A et al (1996) Induction of defence related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112:919–929PubMedGoogle Scholar
  7. Bensalim S, Nowak J, Asiedu S (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152CrossRefGoogle Scholar
  8. Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685. doi: 10.1111/j.1462-2920.2005.00891.x PubMedCrossRefGoogle Scholar
  9. Berge O, Heulin T, Achouak W et al (1991) Rahnella aquatilis, a nitrogen fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can J Microbiol 37:195–203Google Scholar
  10. Bertrand H, Nalin R, Bally R et al (2001) Isolation and identification of the most efficient plant growth promoting bacteria associated with canola (Brassica napus). Biol Fertil Soils 33:152–156. doi: 10.1007/s003740000305 CrossRefGoogle Scholar
  11. Bianco C, Imperlini E, Calogero R et al (2006) Indole 3-acetic acid improves Escherichia colis defences to stress. Arch Microbiol 185:373–382. doi: 10.1007/s00203-006-0103-y PubMedCrossRefGoogle Scholar
  12. Binks PR, Nicklin S, Bruce N (1995) Degradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322PubMedGoogle Scholar
  13. Boonchan S, Britz ML, Stanley GA (1998) Surfactant enhanced biodegradation of high molecular weight PAHs by Stenotrophomonas maltophilia. Biotechnol Bioeng 59:482–494. doi: 10.1002/(SICI)1097-–0290(19980820)59:4<482::AID--BIT11>3.0.CO;2--C PubMedCrossRefGoogle Scholar
  14. Burgmann H, Widmer F, Sigler WV et al (2004) New molecular screening tools for the analysis of free living diazotrophs in soil. Appl Environ Microbiol 70:240–247. doi: 10.1128/AEM.70.1.240–247.2004 PubMedCrossRefGoogle Scholar
  15. Camerini S, Senatore B, Lonardo E et al (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77. doi: 10.1007/s00203-008-0365-7 PubMedCrossRefGoogle Scholar
  16. Chilton MD, Currier T, Farrand S et al (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676. doi: 10.1073/pnas.71.9.3672 PubMedCrossRefGoogle Scholar
  17. Clercq D, Trappen SV, Cleenwerck I et al (2006) Rhodanobacter spathiphylli sp.nov., a gammaproteobacterium isolated from the roots of Spathiphyllum plants grown in a compost amended potting mix. Int J Syst Evol Microbiol 56:1755–1759. doi: 10.1099/ijs.0.64131-0 PubMedCrossRefGoogle Scholar
  18. Creus CM, Sueldo RJ, Barassi C (1998) Water relations in Azospirillum inoculated wheat seedlings under osmotic stress. Can J Bot 76:238–244. doi: 10.1139/cjb-76-2-238 CrossRefGoogle Scholar
  19. deAraujo BS, de Oliveira JO, Machado SS et al (2004) Comparative studies of the peroxidases from hairy roots of Daucus carota, Ipomoea batatas and Solanum aviculare. Plant Sci 167:1151–1157CrossRefGoogle Scholar
  20. de Melo MP, Pithon-Curi TC, Curi R (2004) Indole-3-acetic acid increases glutamine utilization by high peroxidase activity-presenting leucocytes. Life Sci 75:1713–1725PubMedCrossRefGoogle Scholar
  21. Doty SL, Dosher MR, Singleton GL et al (2005) Identification of an endophytic rhizobium in stems of Populus. Symbiosis 39:27–35Google Scholar
  22. Doty SL, James CA, Moore AL et al (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci 104:16816–16821PubMedCrossRefGoogle Scholar
  23. Doty SL (2008) Tansley review: enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333. doi: 10.1111/j.1469-8137.2008.02446.x PubMedCrossRefGoogle Scholar
  24. Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum sp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936PubMedCrossRefGoogle Scholar
  25. Garrison MW, Anderson DE, Campbell DM et al (1996) Stenotrophomonas maltophilia: emergence of multidrug resistant strains during therapy in an in vitro pharmacodynamic chamber model. Antimicrobial agents and Chemotherapy 40:2859–2864PubMedGoogle Scholar
  26. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68PubMedCrossRefGoogle Scholar
  27. Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195PubMedCrossRefGoogle Scholar
  28. Hallmann J, Quadt-Hallmann A, Mahaffee WF et al (1997) Endophytic bacteria in agricultural crops. Can J Microbiol 43:895–914Google Scholar
  29. Hill WA, Bacon Hill P, Crossman SM et al (1983) Characterisation of N2-fixing bacteria associated with sweet potato roots. Can J Microbiol 29:860–862Google Scholar
  30. Hill WA, Dodo H, Hahn SK et al (1990) Sweet potato root and biomass production with and without fertilization. Agron J 82:1120–1122Google Scholar
  31. Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circular 347, Calif Agric Expt Stn, University of California, Berkeley, CAGoogle Scholar
  32. Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1-amino-cyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR 12–2. Can J Microbiol 40:1019–1025CrossRefGoogle Scholar
  33. Kampert M, Strzelczyk E (1975) Synthesis of auxins by fungi isolated from the roots of pine seedlings (Pinus silvestries L.) and from soil. Acta Microbiol Paleon Ser B 7:223–230Google Scholar
  34. Kanaly RA, Harayama S, Watanabe K (2002) Rhodanobacter sp. strain BPC1 in a Benzo(a)pyrene mineralizing bacterial consortium. Appl Environ Microbiol 68:5826–5833PubMedCrossRefGoogle Scholar
  35. Katarina C, Hojka K, Ravnikar M et al (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Letters 244:341–345CrossRefGoogle Scholar
  36. Kim KY, Cho YS, Sohn BK et al (2002) Cold storage of mixed inoculum of Glomus intraradius enhances root colonization, phosphorous status and growth of hot pepper. Plant Soil 238:267–272CrossRefGoogle Scholar
  37. Ladha JK, Barraquio WL, Watanabe I (1983) Isolation and identification of nitrogen fixing Enterobacter cloacae and Klebsiella planticola associated with rice plants. Can J Microbiol 29:1301–1308Google Scholar
  38. Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol 7:215–219CrossRefGoogle Scholar
  39. Lambert B, Joos H, Dierickx S et al (1990) Identification and plant interaction of a Phyllobacterium sp., a predominant rhizobacterium of young sugar beet plants. Appl Environ Microbiol 56:1093–1102PubMedGoogle Scholar
  40. Lata H, Li XC, Silva B et al (2006) Identification of IAA producing endophytic bacteria from micropropagated echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult 85:353–359CrossRefGoogle Scholar
  41. Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. HortScience 32:188–192Google Scholar
  42. Lodewyckz C, Vangronsveld J, Porteous F et al (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606CrossRefGoogle Scholar
  43. Madhaiyan M, Poonguzhali S, Senthilkumar M et al (2004) Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium sp. Bot Bull Acad Sin 45:315–324Google Scholar
  44. Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227:115–126CrossRefGoogle Scholar
  45. Malinowski DP, Zuo H, Belesky DP et al (2004) Evidence of copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium sp. endophytes. Plant Soil 267:1–12CrossRefGoogle Scholar
  46. Mantelin S, Desbrosses G, Larcher M et al (2006) Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 223:591–603PubMedCrossRefGoogle Scholar
  47. Mattos KA, Jones C, Heise N et al (2001) Structure of an acidic exopolysachharide produced by the diazotrophic endophytic bacterium Burkholderia brasiliensi. Eur J Biochem 268:3174–3179PubMedCrossRefGoogle Scholar
  48. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol 15:473–497CrossRefGoogle Scholar
  49. Nie L, Shah S, Rashid A et al (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361CrossRefGoogle Scholar
  50. Nowak J, Asiedu SK, Lazarovits G (1995) Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plantlets co-cultured with a plant growth promoting pseudomonad bacterium. In: Carre F, Chagvardieff P (eds) Proc. International Symposium on Ecophysiology and Photosynthetic in Vitro Cultures, Aix-en-Provence, France CEA, Cadarache, France, pp173–180Google Scholar
  51. O Sullivan DJ, O, Gara F (1992) Traits of fluorescent Pseudomonas sp. involved in suppression of plant root pathogens. Microbial Rev 56:662–676Google Scholar
  52. Pacovsky RS (1988) Influence of inoculation with Azospirillum brasilense and Glomus fasciculatum on sorghum nutrition. Plant Soil 110:283–287CrossRefGoogle Scholar
  53. Paula MA, Reis UM, Dobereiner J (1991) Interactions of Golum clarum with Acetobacter diazotropicus in infection of sweet potato, sugarcane and sweet sorghum. Biol Fertil Soils 11:111–115CrossRefGoogle Scholar
  54. Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288PubMedCrossRefGoogle Scholar
  55. Redman RS, Sheehan KB, Stout RG et al (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581PubMedCrossRefGoogle Scholar
  56. Reinhold-Hurk B, Hurek T (1998) Life in grasses:diazotrophic endophytes. Trends Microbiol 6:139–144CrossRefGoogle Scholar
  57. Reiter B, Burgmann H, Burg K et al (2003) Endophytic gene diversity in African sweet potato. Can J Microbiol 49:549–555PubMedCrossRefGoogle Scholar
  58. Sahai AS, Manocha MS (1993) Chitinases of fungi and plants:their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev 11:317–338CrossRefGoogle Scholar
  59. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  60. Sakiyama CCH, Paula EM, Pereira PC et al (2001) Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett Appl Microbiol 33:117–121PubMedCrossRefGoogle Scholar
  61. Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268PubMedCrossRefGoogle Scholar
  62. Tamura K, Dudley J, Nei M et al (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  63. Tanprasert P, Reed BM (1997) Detection and identification of bacterial contaminants from strawberry runner explants. In Vitro Cell Dev Biol 33:221–226CrossRefGoogle Scholar
  64. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  65. Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180PubMedCrossRefGoogle Scholar
  66. Vega FE, Ripoll MP, Posada F et al (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45:371–380PubMedCrossRefGoogle Scholar
  67. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotech 91:127–141CrossRefGoogle Scholar
  68. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  69. Weon HY, Kim BY, Hong SB et al (2007) Rhodanobacter ginsengisoli sp. nov and Rhodanobacter terrae sp. nov. isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 57:2810–2813PubMedCrossRefGoogle Scholar
  70. Yoneyama T, Terakado J, Masuda T (1998) Natural abundance of 15N in sweet potato, pumpkin, sorghum and castor bean: possible input of N2 derived nitrogen in sweet potato. Biol Fertil Soils 26:152–154CrossRefGoogle Scholar
  71. Zaidi SFA (2003) Biocontrol of Fusarium oxysporium by plant growth promoting rhizobacteria in soybean. Ann Agr Res 24:676–678Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.College of Forest ResourcesUniversity of WashingtonSeattleUSA

Personalised recommendations