Plant and Soil

, Volume 321, Issue 1–2, pp 305–339

Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms

  • Alan E. Richardson
  • José-Miguel Barea
  • Ann M. McNeill
  • Claire Prigent-Combaret
Review Article

Abstract

The rhizosphere is a complex environment where roots interact with physical, chemical and biological properties of soil. Structural and functional characteristics of roots contribute to rhizosphere processes and both have significant influence on the capacity of roots to acquire nutrients. Roots also interact extensively with soil microorganisms which further impact on plant nutrition either directly, by influencing nutrient availability and uptake, or indirectly through plant (root) growth promotion. In this paper, features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen. The interaction of roots with soil microorganisms, in particular with mycorrhizal fungi and non-symbiotic plant growth promoting rhizobacteria, is also considered in relation to nutrient availability and through the mechanisms that are associated with plant growth promotion.

Keywords

Soil microorganisms PGPR Mycorrhizal fungi Exudate Phosphorus Nitrogen Uptake Mineralization 

References

  1. Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana: Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J Biol Chem 270:19093–19099PubMedCrossRefGoogle Scholar
  2. Adams MA, Pate JS (1992) Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.). Plant Soil 145:107–113 doi:10.1007/BF00009546 CrossRefGoogle Scholar
  3. Ae N, Arihara J, Okada K (1991) Phosphorus uptake mechanisms of pigeon pea grown in Alfisols and Vertisols. In: Johansen C, Lee KK, Sahrawat KL (eds) Phosphorus nutrition in grain legumes in the semi-arid tropics. ICRISAT, Patancheru, pp 91–98Google Scholar
  4. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181PubMedCrossRefGoogle Scholar
  5. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893PubMedCrossRefGoogle Scholar
  6. Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N labelled sources by Glomus mosseae, a vesicular arbuscular mycorrhizal fungus. New Phytol 95:381–396CrossRefGoogle Scholar
  7. Amos B, Walters DT (2006) Maize root biomass and net rhizodeposited carbon: An analysis of the literature. Soil Sci Soc Am J 70:1489–1503CrossRefGoogle Scholar
  8. Arshad M, Frankenberger WT (1998) Plant growth regulating substances in the rhizosphere. Microbial production and functions. Adv Agron 62:46–151Google Scholar
  9. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10PubMedCrossRefGoogle Scholar
  10. Aslam M, Travis RL, Rains DW (1996) Evidence for substrate induction of a nitrate efflux system in barley roots. Plant Physiol 112:1167–1175PubMedGoogle Scholar
  11. Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347–357PubMedCrossRefGoogle Scholar
  12. Azcon R, Barea JM, Hayman DS (1976) Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate-solubilizing bacteria. Soil Biol Biochem 8:135–138CrossRefGoogle Scholar
  13. Badalucco L, Nannipieri P (2007) Nutrient transformations in the rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, Florida, pp 111–133Google Scholar
  14. Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922CrossRefGoogle Scholar
  15. Baon JB, Smith SE, Alston AM (1994) Growth response and phosphorus uptake of rye with long and short root hairs: Interactions with mycorrhizal infection. Plant Soil 167:247–254 doi:10.1007/BF00007951 CrossRefGoogle Scholar
  16. Barber SA (1995) Soil nutrient bioavailability: A mechanistic approach. 2nd edition. Wiley, New YorkGoogle Scholar
  17. Barea JM (1991) Vesicular-arbuscular mycorrhizas as modifiers of soil fertility. In: Stewart BA (ed) Advances in Soil Science. Springer-Verlag, New York, pp 1–40Google Scholar
  18. Barea JM, Azcón R, Azcón-Aguilar C (2005a) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma A (eds) Microorganisms in soils: Roles in genesis and functions. Springer-Verlag, Berlin, pp 195–212CrossRefGoogle Scholar
  19. Barea JM, Azcón-Aguilar C, Azcón R (1987) Vesicular-arbuscular mycorrhiza improve both symbiotic N2 fixation and N uptake from soil as assessed with a 15N technique under field conditions. New Phytol 106:717–725CrossRefGoogle Scholar
  20. Barea JM, Bonis AF, Olivares J (1983) Interactions between Azospirillum and VA mycorrhiza and their effects on growth and nutrition of maize and ryegrass. Soil Biol Biochem 15:705–709CrossRefGoogle Scholar
  21. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005b) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedCrossRefGoogle Scholar
  22. Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosys 63:35–42CrossRefGoogle Scholar
  23. Barea JM, Ferrol N, Azcón-Aguilar C, Azcón R (2008) Mycorrhizal symbioses. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 143–163CrossRefGoogle Scholar
  24. Barlow PW, Brain P, Parker JS (1991) Cellular growth in roots of a gibberellin-deficient mutant of tomato (Lycopersicon esculentum Mill.) and its wild-type. J Exp Bot 42:339–351CrossRefGoogle Scholar
  25. Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241 doi:10.1007/BF00011878 CrossRefGoogle Scholar
  26. Bar-Yosef B (1991) Root excretions and their environmental effects. Influence on availability of phosphorus. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: The hidden half. Marcel Dekker, New York, pp 529–557Google Scholar
  27. Bashan Y, Holguin G (1997) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228CrossRefGoogle Scholar
  28. Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620–627PubMedCrossRefGoogle Scholar
  29. Bertin C, Yang XH, Weston L (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83 doi:10.1023/A:1026290508166 CrossRefGoogle Scholar
  30. Bieleski RL (1973) Phosphate pools, phosphate transport and phosphate availability. Ann Rev Plant Physiol 24:225–252CrossRefGoogle Scholar
  31. Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470PubMedCrossRefGoogle Scholar
  32. Bleecker AB, Kende H (2000) A gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18PubMedCrossRefGoogle Scholar
  33. Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to grasses and cereal. Aust J Plant Physiol 28:889–895Google Scholar
  34. Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207 doi:10.1007/BF00012037 CrossRefGoogle Scholar
  35. Bolan NS, Robson AD, Barrow NJ, Aylmore LAG (1984) Specific activity of phosphorus in mycorrhizal and non-mycorrhizal plants in relation to the availability of phosphorus to plants. Soil Biol Biochem 16:299–304CrossRefGoogle Scholar
  36. Bonkowski M (2004) Protozoa and plant growth: The microbial loop in soil revisited. New Phytol 162:617–631CrossRefGoogle Scholar
  37. Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34:1709–1715CrossRefGoogle Scholar
  38. Bonkowski M, Griffiths BS, Scrimgeour CM (2000) Substrate heterogeneity and microfauna in soil organic `hotspots’ as determinants of nitrogen capture and growth of ryegrass. Appl Soil Ecol 14:37–53CrossRefGoogle Scholar
  39. Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503PubMedCrossRefGoogle Scholar
  40. Bowen GD, Rovira AD (1991) The rhizosphere, the hidden half of the hidden half. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: The hidden half. Marcel Dekker, New York, pp 641–649Google Scholar
  41. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102CrossRefGoogle Scholar
  42. Braum SM, Helmke PA (1995) White lupin utilizes soil-phosphorus that is unavailable to soybean. Plant Soil 176:95–100 doi:10.1007/BF00017679 CrossRefGoogle Scholar
  43. Brimecombe MJ, de Leij FAAM, Lynch JM (1999) Effect of introduced Pseudomonas fluorescens strains on the uptake of nitrogen by wheat from 15N-enriched organic residues. World J Microbiol Biotech 15:417–423CrossRefGoogle Scholar
  44. Brimecombe MJ, de Leij FAAM, Lynch JM (2000) Effect of introduced Pseudomonas fluorescens strains on soil nematode and protozoan populations in the rhizosphere of wheat and pea. Microb Ecol 38:387–397CrossRefGoogle Scholar
  45. Brimecombe MJ, De Leij FAAM, Lynch JM (2007) Rhizodeposition and microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic susbstances at the soil-plant interface. CRC Press, Boca Raton, Florida, pp 73–109Google Scholar
  46. Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: A critical review. J Plant Physiol 159:567–584CrossRefGoogle Scholar
  47. Broekaert WF, Delauré SL, De Bolle MFC, Cammue BPA (2006) The role of ethylene in host-pathogen interactions. Ann Rev Phytopathol 44:393–416CrossRefGoogle Scholar
  48. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  49. Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26PubMedCrossRefGoogle Scholar
  50. Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033PubMedGoogle Scholar
  51. Burleigh SH, Cavagnaro TR, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1–9CrossRefGoogle Scholar
  52. Buscot F (2005) What are soils? In: Buscot F, Varma A (eds) Microorganisms in soils: Roles in genesis and functions. Soil Biology Vol 3. Springer-Verlag, Heidelberg, pp 3–17CrossRefGoogle Scholar
  53. Cacciari I, Lippi D, Pietrosanti T, Pietrosanti W (1989) Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant Soil 115:151–153 doi:10.1007/BF02220706 CrossRefGoogle Scholar
  54. Cardoso IM, Boddington CL, Janssen BH, Oenema O, Kuyper TW (2006) Differential access to phosphorus pools of an oxisol by mycorrhizal and nonmycorrhizal maize. Comm Soil Sci Plant Anal 37:1537–1551CrossRefGoogle Scholar
  55. Cassán F, Bottini R, Schneider G, Piccoli P (2001) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol 125:2053–2058PubMedCrossRefGoogle Scholar
  56. Casarin V, Plassard C, Hinsinger P, Arvieu JC (2004) Quantification of ectomycorrhizal fungal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytol 163:177–185CrossRefGoogle Scholar
  57. Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650CrossRefGoogle Scholar
  58. Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44PubMedCrossRefGoogle Scholar
  59. Chapin FS (1980) The mineral nutrition of wild plants. Ann Rev Ecol Syst 11:233–260CrossRefGoogle Scholar
  60. Chapin FS (1993) Preferential use of organic nitrogen for growth by a nonmycorrhizal artic sedge. Nature 361:150–153CrossRefGoogle Scholar
  61. Chen CR, Condron LM, Davis MR, Sherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D.Don). Soil Biol Biochem 34:487–499CrossRefGoogle Scholar
  62. Cheng W, Johnson DW, Fu S (2003) Rhizosphere effects on decomposition: Controls of plant species, phenology, and fertilization. Soil Sci Soc Am J 67:1418–1427Google Scholar
  63. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918PubMedCrossRefGoogle Scholar
  64. Chiou TJ, Liu H, Harrison MJ (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J 25:281–293PubMedCrossRefGoogle Scholar
  65. Christou M, Avramides EJ, Roberts JP, Jones DL (2005) Dissolved organic nitrogen in contrasting agricultural ecosystems. Soil Biol Biochem 37:1560–1563CrossRefGoogle Scholar
  66. Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902CrossRefGoogle Scholar
  67. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175 doi:10.1023/A:1024106605806 CrossRefGoogle Scholar
  68. Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303PubMedCrossRefGoogle Scholar
  69. Curl EA, Truelove B (1986) The rhizosphere. Advanced Series in Agricultural Sciences 15. Springer-Verlag, HeidelbergGoogle Scholar
  70. Darrah PR (1993) The rhizosphere and plant nutrition: A quantitative approach. Plant Soil 156:1–20 doi:10.1007/BF00024980 CrossRefGoogle Scholar
  71. de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fert Soil 24:358–364CrossRefGoogle Scholar
  72. de la Fuente-Martínez JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1588CrossRefGoogle Scholar
  73. de Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411CrossRefGoogle Scholar
  74. De Willigen P (1986) Supply of soil nitrogen to the plant during the growing season. In: Lambers H, Neeteson JJ, Stulen I (eds) Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. Martinus Nijhoff, Dordrecht, pp 417–432Google Scholar
  75. Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125:2059–2067PubMedCrossRefGoogle Scholar
  76. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high level aluminium tolerance in barley with the ALMT1 gene. Proc Nat Acad Sci USA 101:15249–15254PubMedCrossRefGoogle Scholar
  77. Devienne-Barret F, Justes E, Machet JM, Mary B (2000) Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions. Ann Bot 86:995–1005CrossRefGoogle Scholar
  78. Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid and other root clusters. Bot Acta 108:183–200Google Scholar
  79. Dinlelaker B, Römheld V, Marschner H (1989) Citric acid exudation and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:265–292Google Scholar
  80. Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164CrossRefGoogle Scholar
  81. Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley I. The effect of nitrate concentration on the growth of axes and laterals. J Exp Bot 24:1189–1202CrossRefGoogle Scholar
  82. Duijff BJ, Meijer JW, Bakker PAHM, Schippers B (1993) Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp. Eur J Plant Pathol 99:277–289Google Scholar
  83. Dunbabin VM, McDermott S, Bengough AG (2006) Upscaling from rhizosphere to whole root system: Modelling the effects of phospholipid surfactants on water and nutrient uptake. Plant Soil 283:57–72 doi:10.1007/S11104-005-0866-y CrossRefGoogle Scholar
  84. Ericsson T (1995) Growth and shoot:root ratio of seedlings in relation to nutrient availability. Plant Soil 168/169:205–214 doi:10.1007/BF00029330 CrossRefGoogle Scholar
  85. Fan MS, Zhu JM, Richards C, Brown KM, Lynch JP (2003) Physiological roles for aerenchyma in phosphorus-stressed roots. Func Plant Biol 30:493–506CrossRefGoogle Scholar
  86. Farwell AJ, Veselya S, Neroa V, Rodriguez H, McCormack K, Shah S, Dixona DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545PubMedCrossRefGoogle Scholar
  87. Fillery IRP (2007) Plant-based manipulation of nitrification in soil: A new approach to managing N loss? Plant Soil 294:1–4 doi:10.1007/S11104-007-9263-z CrossRefGoogle Scholar
  88. Fitter AH (1987) An architectural approach to the comparative ecology of plant-root systems. New Phytol 106:61–77Google Scholar
  89. Föhse D, Claassen N, Jungk A (1991) Phosphorus efficiency of plants II. Significance of root radius, root hairs and cation-anion balance for phosphorus influx in seven plant species. Plant Soil 132:261–272 doi:10.1007/BF00010407 Google Scholar
  90. Forde B (2002) Local and long range signalling pathways regulating plant response to nitrate. Ann Rev Plant Biol 53:203–224CrossRefGoogle Scholar
  91. Forde B, Clarkson DT (1999) Nitrate and ammonium nutrition of plants: Physiological and molecular perspectives. Adv Bot Res 30:1–90CrossRefGoogle Scholar
  92. Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68 doi:10.1023/A:1010329902165 CrossRefGoogle Scholar
  93. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil doi:10.1007/S11104-008-9833-8
  94. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  95. Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29:15–23Google Scholar
  96. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743PubMedCrossRefGoogle Scholar
  97. Fukaki H, Okushima Y, Tasaka M (2007) Auxin-mediated lateral root formation in higher plants. Int Rev Cytol 256:111–137PubMedCrossRefGoogle Scholar
  98. Gahoonia TS, Nielsen NE (1992) The effect of root induced pH changes on the depletion of inorganic and organic phosphorus in the rhizosphere. Plant Soil 143:185–191 doi:10.1007/BF00007872 CrossRefGoogle Scholar
  99. Gahoonia TS, Nielsen NE (1997) Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica 98:177–182CrossRefGoogle Scholar
  100. Gahoonia TS, Nielsen NE (2003) Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low- and high-P soils. Plant Cell Environ 26:1759–1766CrossRefGoogle Scholar
  101. Gahoonia TS, Nielsen NE, Lyshede OB (1999) Phosphorus acquisition of cereal cultivars in the field at three levels of P fertilization. Plant Soil 211:269–281 doi:10.1023/A:1004742032367 CrossRefGoogle Scholar
  102. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent Pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192PubMedCrossRefGoogle Scholar
  103. Garbaye J (1994) Helper bacteria, a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  104. Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 68:19–32 doi:10.1007/BF02374724 CrossRefGoogle Scholar
  105. Gardner WK, Parbury DG, Barber DA (1981) Proteoid root morphology and function in Lupinus albus. Plant Soil 60:143–147 doi:10.1007/BF02377120 CrossRefGoogle Scholar
  106. Gastal F, Lemaire G (2002) N uptake and distribution in crops: An agronomical and ecophysiological perspective. J Exp Bot 53:789–799PubMedCrossRefGoogle Scholar
  107. George TS, Gregory PJ, Hocking PJ, Richardson AE (2008) Variation in root-associated phosphatase activities in wheat contributes to the utilization of organic P substrates in-vitro, but does not explain differences in the P-nutrition of plants when grown in soils. Environ Experim Bot 64:239–249CrossRefGoogle Scholar
  108. George TS, Gregory PJ, Robinson JS, Buresh RJ (2002) Changes in phosphorus concentrations and pH in the rhizosphere of some agroforestry and crop species. Plant Soil 246:65–73 doi:10.1023/A:1021523515707 CrossRefGoogle Scholar
  109. George TS, Richardson AE, Smith JB, Hadobas PA, Simpson J (2005b) Limitations to the potential of transgenic Trifolium subterraneum L. plants that exude phytase, when grown in soils with a range of organic phosphorus content. Plant Soil 278:263–274 doi:10.1007/S11104-005-8699-2 CrossRefGoogle Scholar
  110. George TS, Simpson RJ, Hadobas PA, Richardson AE (2005a) Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition in plants grown in amended soil. Plant Biotechnol J 3:129–140PubMedCrossRefGoogle Scholar
  111. Gerke J (1993) Solubilization of Fe (III) from humic-Fe complexes, humic Fe oxide mixtures and from poorly ordered Fe-oxide by organic acids: consequences for P-adsorption. Z Pflanz Bodenkunde 156:253–257CrossRefGoogle Scholar
  112. Gilroy S, Jones DL (2002) Through form to function: Root hair development and nutrient uptake. Trends Plant Sci 5:56–60CrossRefGoogle Scholar
  113. Giri B, Giang PH, Kumari R, Prasad R, Varma A (2005) Microbial diversity in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: Roles in genesis and functions. Springer-Verlag, Heidelberg, pp 195–212Google Scholar
  114. Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  115. Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR 12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915Google Scholar
  116. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  117. Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  118. Gregory PJ (2006) Plant roots: Growth, activity and interaction with soils. Blackwell Publishing, OxfordGoogle Scholar
  119. Grierson CS, Parker JS, Kemp AC (2001) Arabidopsis genes with roles in root hair development. J Plant Nutr Soil Sci 164:131–140CrossRefGoogle Scholar
  120. Griffiths BS (1989) Enhanced nitrification in the presence of bacteriophagous protozoa. Soil Biol Biochem 21:1045–1051CrossRefGoogle Scholar
  121. Griffiths BS (1990) A comparison of microbial-feeding nematodes and protozoa in the rhizosphere of different plants. Biol Fert Soil 9:83–88CrossRefGoogle Scholar
  122. Griffiths BS, Bonkowski M, Dobson G, Caul S (1999) Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia 43:297–304Google Scholar
  123. Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: Physiology and function. Kluwer Academic Publishers, Dordrecht, pp 239–262Google Scholar
  124. Gulden RH, Vessey JK (2000) Penicillium bilaii inoculation increases root hair production in field pea. Can. J. Plant Sci. 80:801–804Google Scholar
  125. Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plantarum 111:206–211CrossRefGoogle Scholar
  126. Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93 doi:10.1023/A:1020663916259 CrossRefGoogle Scholar
  127. Hao Y, Charles TC, Glick BR (2007) ACC deaminase from plant growth-promoting bacteria affects crown gall development. Can J Microbiol 53:1291–1299PubMedCrossRefGoogle Scholar
  128. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic avirulent plant symbionts. Nature Rev 2:43–56CrossRefGoogle Scholar
  129. Hayes JE, Richardson AE, Simpson RJ (1999) Phytase and acid phosphatase activities in roots of temperate pasture grasses and legumes. Aust J Plant Physiol 26:801–809CrossRefGoogle Scholar
  130. Hayes JE, Simpson RJ, Richardson AE (2000) The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220:165–174 doi:10.1023/A:1004782324030 CrossRefGoogle Scholar
  131. Hedley MJ, White RE, Nye PH (1982) Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings III. Changes in L value, soil phosphate fractions and phosphatase activity. New Phytol 91:45–56CrossRefGoogle Scholar
  132. Helal HM, Dressler A (1989) Mobilization and turnover of soil phosphorus in the rhizosphere. Z Pflanz Bodenkunde 152:175–180CrossRefGoogle Scholar
  133. Herman DJ, Johnson KK, Jaeger CH, Schwartz E, Firestone MK (2006) Root influence on nitrogen mineralization and nitrification in Avena barbata rhizosphere soil. Soil Sci Soc Am J 70:1504–1511CrossRefGoogle Scholar
  134. Hill JO, Simpson RJ, Moore AD, Chapman DF (2006) Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant Soil 286:7–19 doi:10.1007/S11104-006-0014-3 CrossRefGoogle Scholar
  135. Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advan Agron 64:225–265CrossRefGoogle Scholar
  136. Hinsinger P (2001) Bioavailability of inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 237:173–195 doi:10.1023/A:1013351617532 CrossRefGoogle Scholar
  137. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil doi:10.1007/S11104-008-9885-9
  138. Hinsinger P, Gilkes RJ (1996) Mobilization of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Euro J Soil Sci 47:533–544CrossRefGoogle Scholar
  139. Hinsinger P, Plassard C, Tang CX, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 248:43–59 doi:10.1023/A:1022371130939 CrossRefGoogle Scholar
  140. Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748CrossRefGoogle Scholar
  141. Hocking P (2001) Organic acids exuded from roots in phosphorus uptake and aluminium tolerance of plants in acid soils. Adv Agron 74:63–97CrossRefGoogle Scholar
  142. Hocking PJ, Keerthisinghe G, Smith FW, Randall PJ (1997) Comparison of the ability of different crop species to access poorly-available soil phosphorus. In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and agriculture. Kluwer Academic Publishers, Dordrecht, pp 305–308Google Scholar
  143. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24CrossRefGoogle Scholar
  144. Hodge A, Robinson D, Fitter AH (2000a) Are microorganisms more effective than plants at competing for nitrogen. Trends Plant Sci 5:304–308PubMedCrossRefGoogle Scholar
  145. Hodge A, Robinson D, Fitter AH (2000b) An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. New Phytol 145:575–584CrossRefGoogle Scholar
  146. Hodge A, Robinson D, Griffith BS, Fitter AH (1999a) Nitrogen capture by plants grown in N-rich organic patches of contrasting size and strength. J Exp Bot 50:1243–1252CrossRefGoogle Scholar
  147. Hodge A, Robinson D, Griffiths BS, Fitter AH (1999b) Why plants bother: Root proliferation results in increased nitrogen capture from am organic patch when two grasses compete. Plant Cell Environ 22:811–820CrossRefGoogle Scholar
  148. Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphorus by rape. II. Local root exudation of organic acids in response to P-starvation. Plant Soil 113:161–165 doi:10.1007/BF02280176 CrossRefGoogle Scholar
  149. Höflich G, Wiehe W, Kühn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897–905CrossRefGoogle Scholar
  150. Hogh-Jensen H (2006) The nitrogen transfer between plants: An important but difficult flux to quantify. Plant Soil 282:1–5 doi:10.1007/S11104-005-2613-9 CrossRefGoogle Scholar
  151. Højberg O, Schnider U, Winteler HV, Sørensen J, Haas D (1999) Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl Environ Microbiol 65:4085–4093PubMedGoogle Scholar
  152. Holguin G, Glick BR (2001) Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microb Ecol 41:281–288PubMedGoogle Scholar
  153. Holguin G, Glick BR (2003) Transformation of Azospirillum brasilense Cd with an ACC deaminase gene from Enterobacter cloacae UW4 fused to the Tetr gene promoter improves its fitness and plant growth promoting ability. Microb Ecol 46:122–133PubMedCrossRefGoogle Scholar
  154. Hu S, Chapin FS, Firestone MK, Field CB, Chiarello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–190PubMedCrossRefGoogle Scholar
  155. Hurek T, Handley LL, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242PubMedCrossRefGoogle Scholar
  156. Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923PubMedGoogle Scholar
  157. Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263CrossRefGoogle Scholar
  158. Itoh S, Barber SA (1983) Phosphorus uptake by six plant species as related to root hairs. Agron J 75:457–461Google Scholar
  159. Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363PubMedCrossRefGoogle Scholar
  160. Jaeger CH, Monson RK, Fisk MC, Schmidt SK (1999) Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology 80:1883–1891CrossRefGoogle Scholar
  161. Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380CrossRefGoogle Scholar
  162. Jakobsen I, Chen BD, Munkvold L, Lundsgaard T, Zhu YG (2005a) Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant Cell Environ 28:928–938CrossRefGoogle Scholar
  163. Jakobsen I, Gazey C, Abbott IK (2001) Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytol 149:95–103CrossRefGoogle Scholar
  164. Jakobsen I, Leggett ME, Richardson AE (2005b) Rhizosphere microorganisms and plant phosphorus uptake. In: Sims JT, Sharpley AN (eds) Phosphorus, agriculture and the environment. American Society for Agronomy, Madison, pp 437–494Google Scholar
  165. Jingguo W, Bakken LR (1997) Competition for nitrogen during decomposition of plant residues in soil: Effect of spatial placement of N-rich and N-poor plant residues. Soil Biol Biochem 29:153–162CrossRefGoogle Scholar
  166. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13CrossRefPubMedGoogle Scholar
  167. Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86CrossRefGoogle Scholar
  168. Joner EJ, van Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae. Plant Soil 226:199–210 doi:10.1023/A:1026582207192 CrossRefGoogle Scholar
  169. Jones DL (1998) Organic acids in the rhizosphere: A critical review. Plant Soil 205:25–44 doi:10.1023/A:1004356007312 CrossRefGoogle Scholar
  170. Jones DL, Darrah PR (1994a) Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163:1–12 doi:10.1007/BF00033935 Google Scholar
  171. Jones DL, Darrah PR (1994b) Role of root derived organic acids in the mobilization of nutrients in the rhizosphere. Plant Soil 166:247–257 doi:10.1007/BF00008338 CrossRefGoogle Scholar
  172. Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils—misconceptions and knowledge gaps. Plant Soil 248:31–41 doi:10.1023/A:1022304332313 CrossRefGoogle Scholar
  173. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil doi:10.1007/S11104-009-9925-0
  174. Jones DL, Owen AG, Farrar JF (2002) Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol Biochem 34:1893–1902CrossRefGoogle Scholar
  175. Jones DL, Shannon DV, Murphy D, Farrar J (2004) Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem 36:749–756CrossRefGoogle Scholar
  176. Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129CrossRefGoogle Scholar
  177. Kaneda S, Kaneko N (2008) Collembolans feeding on soil affect carbon and nitrogen mineralization by their influence on microbial and nematode activities. Biol Fert Soils 44:435–442CrossRefGoogle Scholar
  178. Kawaguchi M, Syōno K (1996) The excessive production of indole-3-acetic acid and its significance in studies of the biosynthesis of this regulator of plant growth and development. Plant Cell Physiol 37:1043–1048PubMedGoogle Scholar
  179. Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143CrossRefGoogle Scholar
  180. Keerthisinghe G, DeDatta SK, Mengel K (1985) Importance of exchangeable and nonexchangeable soil NH4 + in nitrogen nutrition of lowland rice. Soil Sci 140:194–201CrossRefGoogle Scholar
  181. Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1988) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ 21:467–478CrossRefGoogle Scholar
  182. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480PubMedCrossRefGoogle Scholar
  183. Knudsen MT, Hauggaard-Nielsen H, Jørnsgård B, Jensen ES (2004) Comparison of interspecific competition and N use in pea-barley, faba bean-barley and lupin-barley intercrops grown at two temperature locations. J Agric Sci 142:617–627CrossRefGoogle Scholar
  184. Koga J, Adachi T, Hidaka H (1991) Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol Gen Genet 226:10–16PubMedCrossRefGoogle Scholar
  185. Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517CrossRefGoogle Scholar
  186. Kucey RMN (1987) Increased phosphorus uptake by wheat and field bean inoculated with phosphorus-solubilizing Penicillium bilaji strain and with vesicular arbuscular mycorrhizal fungi. Appl Environ Microbiol 53:2699–2703PubMedGoogle Scholar
  187. Kucey RMN (1983) Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678CrossRefGoogle Scholar
  188. Kucey RMN, Janzen HH, Leggett ME (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228CrossRefGoogle Scholar
  189. Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251PubMedCrossRefGoogle Scholar
  190. Kuzyakov Y (2002) Review: Factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396CrossRefGoogle Scholar
  191. Kuzyakov Y, Leinweber P, Sapronov D, Eckhardt K (2003) Qualitative assessment of rhizodeposits in non-sterile soil by analytical pyrolysis. J Plant Nutr Soil Sci 166:719–723CrossRefGoogle Scholar
  192. Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: The versatility of an extensive signal molecule. Ann Rev Plant Biol 54:109–136CrossRefGoogle Scholar
  193. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713PubMedCrossRefGoogle Scholar
  194. Leadley P, Reynolds J, Chapin FS (1997) A model of nitrogen uptake by Eriophorum vaginatum roots in the field: Ecological implications. Ecol Monogr 67:1–22Google Scholar
  195. Lemanceau P, Kraemer SM, Briat JF (2009) Iron in the rhizosphere: a case study. Plant Soil (this volume-in press)Google Scholar
  196. Lethbridge G, Davidson MS (1983) Root-associated nitrogen-fixing bacteria and their role in the nitrogen nutrition of wheat estimated by 15N isotope dilution. Soil Biol Biochem 15:365–374CrossRefGoogle Scholar
  197. Li J, Ovakim DH, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105PubMedCrossRefGoogle Scholar
  198. Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci 104:11192–11196PubMedCrossRefGoogle Scholar
  199. Liao M, Palta JA, Fillery IRP (2006) Root characteristics of vigorous wheat improve early nitrogen uptake. Aust J Agric Res 57:1097–1107CrossRefGoogle Scholar
  200. Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EM, Zaleska I (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395CrossRefGoogle Scholar
  201. Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85:315–317CrossRefGoogle Scholar
  202. Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: Regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant-Microbe Interact 11:14–22PubMedCrossRefGoogle Scholar
  203. Liu Q, Loganathan P, Hedley MJ (2005) Influence of ectomycorrhizal hyphae on phosphate fractions and dissolution of phosphate rock in rhizosphere soils of Pinus radiata. J Plant Nutrit 28:1525–1540CrossRefGoogle Scholar
  204. LongXian R, MiaoLian X, Bin Z, Bakker PAHM (2005) Siderophores are the main determinants of fluorescent Pseudomonas strains in suppression of grey mould in Eucalyptus urophylla. Acta Phytopathol Sin 35:6–12Google Scholar
  205. Lopez-Bucio J, de la Vega OM, Guevara-García A, Herrera-Estrella L (2000) Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotechnol 18:450–453PubMedCrossRefGoogle Scholar
  206. López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus. Fungal Genet Biology 43:102–110CrossRefGoogle Scholar
  207. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13PubMedGoogle Scholar
  208. Lynch JP (2005) Root architecture and nutrient acquisition. In: BassiriRad H (ed) Nutrient acquisition by plants: an ecological perspective. Springer-Verlag, Berlin, pp 147–183CrossRefGoogle Scholar
  209. Lynch JP, Brown KM (2001) Topsoil foraging–an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237 doi:10.1023/A:10133 CrossRefGoogle Scholar
  210. Ma Z, Walk TC, Marcus A, Lynch JP (2001) Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: A modeling approach. Plant Soil 236:221–235CrossRefGoogle Scholar
  211. Macklon AES, Grayston SJ, Shand CA, Sim A, Sellars S, Ord BG (1997) Uptake and transport of phosphorus by Agrostis capillaris seedlings from rapidly hydrolysed organic sources extracted from 32P-labelled bacterial cultures. Plant Soil 190:163–167CrossRefGoogle Scholar
  212. Magid J, Tiessen H, Condron LM (1996) Dynamics of organic phosphorus in soils under natural and agricultural ecosystems. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier Science, Amsterdam, pp 429–466CrossRefGoogle Scholar
  213. Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant-Microbe Interact 14:1140–1148PubMedCrossRefGoogle Scholar
  214. Malhotra M, Srivastava S (2008) An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion. Anton Leeuw 93:425–433CrossRefGoogle Scholar
  215. Manske GGB, Ortiz-Monasterio JI, Van Grinkel M, Rajaram S, Molina E, Vick PLG (2000) Traits associated with improved P-uptake efficiency in CIMMYT’s semidwarf spring bread wheat grown on an acid Andisol in Mexico. Plant Soil 221:189–204CrossRefGoogle Scholar
  216. Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34PubMedCrossRefGoogle Scholar
  217. Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I (1998) Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant-Microbe Interact 11:634–642PubMedCrossRefGoogle Scholar
  218. Marek-Kozaczuk M, Skorupska A (2001) Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol Fert Soils 33:146–151CrossRefGoogle Scholar
  219. Marschner H (1995) Mineral nutrition of higher plants. 2nd edition. Academic Press, LondonGoogle Scholar
  220. Masalha J, Kosegarten H, Elmaci Ö, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fert Soils 30:433–439CrossRefGoogle Scholar
  221. Mayer J, Buegger F, Jensen ES, Schloter M, Hess J (2004) Turnover of grain legume N rhizodeposits and effect of rhizodeposition on the turnover of crop residues. Biol Fert Soils 39:153–164CrossRefGoogle Scholar
  222. McLaughlin MJ, Alston AM, Martin JK (1988) Phosphorus cycling in wheat-pasture rotations. II. The role of the microbial biomass in phosphorus cycling. Aust J Soil Res 26:333–342CrossRefGoogle Scholar
  223. McNeill AM, Fillery IRP (2008) Field measurement of lupin belowground nitrogen accumulation and recovery in the subsequent cereal-soil system in a semi-arid mediterranean-type climate. Plant Soil 302:297–316CrossRefGoogle Scholar
  224. McNeill AM, Unkovich M (2007) The nitrogen cycle in terrestrial ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer-Verlag, Berlin, pp 37–64CrossRefGoogle Scholar
  225. Meharg AA, Killham K (1990) The effect of soil pH on rhizosphere carbon flow of Lolium perenne. Plant Soil 123:1–7Google Scholar
  226. Mengel K, Horn D, Tributh H (1990) Availability of interlayer ammonium as related to root vicinity and mineral type. Soil Sci 149:131–137CrossRefGoogle Scholar
  227. Miller A, Cramer M (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36CrossRefGoogle Scholar
  228. Mirza SM, Mehnaz S, Normand P, Prigent-Combaret C, Moënne-Loccoz Y, Bally R, Malik KA (2006) Molecular characterization and PCR detection of a nitrogen -fixing Pseudomonas strain promoting rice growth. Biol Fert Soils 43:163–170CrossRefGoogle Scholar
  229. Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Nat Acad Sci USA 94:7098–7102PubMedCrossRefGoogle Scholar
  230. Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463CrossRefGoogle Scholar
  231. Morel C, Hinsinger P (1999) Rood-induced modifications of the exchange of phosphate ion between soil solution and soil solid phase. Plant Soil 211:103–110CrossRefGoogle Scholar
  232. Mozafar A, Oertli JJ (1992) Uptake of a microbially-produced vitamin (B12) by soybean roots. Plant Soil 139:23–30CrossRefGoogle Scholar
  233. Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353PubMedCrossRefGoogle Scholar
  234. Mukerji KG, Manoharachary C, Singh J (2006) Microbial activity in the rhizosphere. Soil Biology Vol 7. Springer, HeidelbergCrossRefGoogle Scholar
  235. Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fert Soils 34:417–426Google Scholar
  236. Nahas E (2007) Phosphate solubilising microorganisms: Effect of carbon, nitrogen and phosphorus sources. In: Valázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Developments in Plant and Soil Science, vol 102. Springer, Dordrecht, pp 111–115CrossRefGoogle Scholar
  237. Nasholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916CrossRefGoogle Scholar
  238. Neuer G, Kronenberg A, Bothe H (1985) Denitrification and nitrogen fixation by Azospirillum. III. Properties of a wheat-Azospirillum association. Arch Microbiol 141:364–370CrossRefGoogle Scholar
  239. Neumann G, Martinoia E (2002) Cluster roots–an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167PubMedCrossRefGoogle Scholar
  240. Neumann G, Römheld V (2002) Root-induced changes in the availability of nutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: The hidden half. Marcel Dekker, New York, pp 617–649Google Scholar
  241. Neumann G, Römheld V (2007) The release of root exudates as affected by the plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface, 2nd edition. CRC Press, New York, pp 23–72Google Scholar
  242. Nuruzzaman M, Lambers H, Bolland MDA (2006) Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. Plant Soil 281:109–120CrossRefGoogle Scholar
  243. Oberson A, Friesen DK, Rao IM, Bühler S, Frossard E (2001) Phosphorus transformations in an oxisol under contrasting land-use systems: The role of the microbial biomass. Plant Soil 237:197–210CrossRefGoogle Scholar
  244. Oberson A, Joner EJ (2005) Microbial turnover of phosphorus in soil. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, UK, pp 133–164Google Scholar
  245. Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36:667–675CrossRefGoogle Scholar
  246. Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of bacterial groups prefentially associated with mycorrhizal roots of Medicago truncatula. Appl Environ Microbiol 73:913–921PubMedCrossRefGoogle Scholar
  247. Oliveira ALM, Urquiaga S, Dobereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215CrossRefGoogle Scholar
  248. Ona O, Van Impe J, Prinsen E, Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246:125–132PubMedCrossRefGoogle Scholar
  249. Otani F, Ae N, Tanaka H (1996) Uptake mechanisms of crops grown in soils with low P status. II. Significance of organic acids in root exudates of pigeon pea. Soil Sci Plant Nutr 42:533–560Google Scholar
  250. Owen AG, Jones DL (2001) Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem 33:651–657CrossRefGoogle Scholar
  251. Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44CrossRefGoogle Scholar
  252. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220PubMedGoogle Scholar
  253. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801PubMedCrossRefGoogle Scholar
  254. Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci 105:4524–4529PubMedCrossRefGoogle Scholar
  255. Pearse SJ, Venaklaas EJ, Cawthray G, Bolland MDA, Lambers H (2006a) Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil 288:127–139CrossRefGoogle Scholar
  256. Pearse SJ, Venaklaas EJ, Cawthray G, Bolland MDA, Lambers H (2006b) Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol 173:181–190CrossRefGoogle Scholar
  257. Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150PubMedCrossRefGoogle Scholar
  258. Piccoli P, Lucangeli CD, Bottini R, Schneider G (1997) Hydrolysis of [17,17-2H2]gibberellin A20-glucoside and [17,17-2H2]gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul 23:179–182CrossRefGoogle Scholar
  259. Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T (2007) Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol 7:21PubMedCrossRefGoogle Scholar
  260. Pothier JF, Wisniewski-Dyé F, Weiss-Gayet M, Moënne-Loccoz Y, Prigent-Combaret C (2007) Promoter trap identification of wheat seed extract-induced genes in the plant growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiol 153:3608–3622CrossRefGoogle Scholar
  261. Prigent-Combaret C, Blaha D, Pothier JF, Vial L, Poirier MA, Wisniewski-Dyé F, Moënne-Loccoz Y (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiol Ecol 65:202–219CrossRefGoogle Scholar
  262. Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, De Greef J, Schell J, Van Onckelen H (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS-Lett 282:53–55PubMedCrossRefGoogle Scholar
  263. Qian JH, Doran JW, Walters DT (1997) Maize plant contributions to root zone available carbon and microbial transformations of nitrogen. Soil Biol Biochem 29:1451–1462CrossRefGoogle Scholar
  264. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil doi:10.1007/s11104-008-9568-6
  265. Rae AL, Jarmey JM, Mudge SR, Smith FW (2004) Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. Funct Plant Biol 31:141–148CrossRefGoogle Scholar
  266. Raghothama KG (1999) Phosphate acquisition. Ann Rev Plant Physiol Plant Mol Biol 50:665–693CrossRefGoogle Scholar
  267. Rao VR, Ramakrishnan B, Adhya TK, Kanungo PK, Nayak DN (1998) Current status and future prospects of associative nitrogen fixation in rice. World J Microbiol Biotechnol 14:621–633CrossRefGoogle Scholar
  268. Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466PubMedCrossRefGoogle Scholar
  269. Redecker D (2002) New views on fungal evolution based on DNA markers and the fossil record. Res Microbiol 153:125–130PubMedCrossRefGoogle Scholar
  270. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144PubMedCrossRefGoogle Scholar
  271. Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161CrossRefGoogle Scholar
  272. Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: Exploiting genotypic differences. New Phytol 168:305–312PubMedCrossRefGoogle Scholar
  273. Revillas JJ, Rodelas B, Pozo C, Martínez-Toledo MV, González-López J (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493PubMedCrossRefGoogle Scholar
  274. Ribaudo CM, Krumpholz EM, Cassán FD, Bottini R, Cantore ML, Curá JA (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 25:175–185CrossRefGoogle Scholar
  275. Richardson AE (1994) Soil microorganisms and phosphorus availablility. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Management of the soil biota in sustainable farming systems. CSIRO Publishing, Melbourne, pp 50–62Google Scholar
  276. Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906Google Scholar
  277. Richardson AE (2007) Making microorganims mobilize soil phosphorus. In: Valázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Developments in Plant and Soil Science, vol 102. Springer, Dordrecht, pp 85–90CrossRefGoogle Scholar
  278. Richardson AE, George TS, Hens M, Simpson RJ (2005) Utilization of soil organic phosphorus by higher plants. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, UK, pp 165–184Google Scholar
  279. Richardson AE, George TS, Jakobsen I, Simpson RJ (2007) Plant utilization of inositol phosphates. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CABI, Wallingford, UK, pp 242–260Google Scholar
  280. Richardson AE, Hadobas PA, Hayes JE (2001a) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649PubMedCrossRefGoogle Scholar
  281. Richardson AE, Hadobas PA, Hayes JE, O, Hara CP, Simpson RJ (2001b) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229:47–56CrossRefGoogle Scholar
  282. Richardson AE, Simpson RJ, George TS, Hocking PJ (2009) Plant mechanisms to optimize access to soil phosphorus. Crop Pasture Sci 60(2): (in press)Google Scholar
  283. Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54PubMedCrossRefGoogle Scholar
  284. Rillig MC, Mummey DL, Ramsey PW, Klironomos JN, Gannon JE (2006) Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiol Ecol 57:389–395PubMedCrossRefGoogle Scholar
  285. Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225CrossRefGoogle Scholar
  286. Robinson D (2001) Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil 232:41–50CrossRefGoogle Scholar
  287. Robinson D, Hodge A, Griffiths BS, Fitter AH (1999) Plant root proliferation in nitrogen patches confers competitive advantage. Proc Roy Soc Lond B Biol Sci 266:431–435CrossRefGoogle Scholar
  288. Robinson D, van Vuuren MMI (1998) Responses of wild plants to nutrient patches in relation to growth rate and life form. In: Lambers H, Poorter H, van Vuuren MMI (eds) Variation in plant growth. Backhuys, Leiden, pp 237–257Google Scholar
  289. Rodelas B, Salmerón V, Martinez-Toledo MV, González-López J (1993) Production of vitamins by Azospirillum brasilense in chemically-defined media. Plant Soil 153:97–101CrossRefGoogle Scholar
  290. Rodríguez H, Frago R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefGoogle Scholar
  291. Roelofs RFR, Rengel Z, Cawthray GR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant Cell Environ 24:891–903CrossRefGoogle Scholar
  292. Ron-Vaz MD, Edwards AC, Shand CA, Cresser MS (1993) Phosphorus fractions in soil solution: influence of soil acidity and fertiliser additions. Plant Soil 148:175–183CrossRefGoogle Scholar
  293. Rubio G, Liao H, Yan XL, Lynch JP (2003) Topsoil foraging and its role in plant competitiveness for phosphorus in common bean. Crop Sci 43:598–607Google Scholar
  294. Ryan MH, Angus JF (2003) Arbuscular mycorrhizas in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250:225–239CrossRefGoogle Scholar
  295. Ryan MH, van Herwaarden AF, Angus JF, Kirkegaard JA (2005) Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonization by arbuscular mycorrhizal fungi. Plant Soil 270:275–286CrossRefGoogle Scholar
  296. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Ann Rev Plant Physiol Plant Mol Biol 52:527–560CrossRefGoogle Scholar
  297. Scherer HW, Ahrens G (1996) Depletion of non-exchangable NH4 +-N in the soil-root interface in relation to clay mineral composition and plant species. Eur J Agron 5:1–7CrossRefGoogle Scholar
  298. Schimel JP, Bennett J (2004) Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85:591–602CrossRefGoogle Scholar
  299. Schneider G, Schliemann W (1994) Gibberellin conjugates: an overview. Plant Growth Regul 15:247–260CrossRefGoogle Scholar
  300. Schnepf A, Roose T, Schweiger P (2008) Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake—a modelling study. Plant Soil 312:85–99CrossRefGoogle Scholar
  301. Schünmann PHD, Richardson AE, Smith FW, Delhaize E (2004) Characterisation of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot 55:855–865PubMedCrossRefGoogle Scholar
  302. Schübler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota, phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  303. Schweiger PF, Robson AD, Barrow NJ (1995) Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol 131:247–254CrossRefGoogle Scholar
  304. Scott JT Condron LM (2004) Short term effects of radiata pine and selected pasture species on soil organic phosphorus mineralization. Plant Soil 266:153–163CrossRefGoogle Scholar
  305. Seeling B, Zasoski RJ (1993) Microbial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil. Plant Soil 148:277–284CrossRefGoogle Scholar
  306. Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378CrossRefGoogle Scholar
  307. Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif- mutants strains. Mol Plant-Microbe Interact 14:358–366PubMedCrossRefGoogle Scholar
  308. Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843PubMedCrossRefGoogle Scholar
  309. Shand CA, Macklon AES, Edwards AC, Smith S (1994) Inorganic and organic P in soil solutions from three upland soils. I. Effects of soil solution extraction conditions, soil type and season. Plant Soil 159:255–264CrossRefGoogle Scholar
  310. Shane MW, Lambers H (2005) Cluster roots: A curiosity in context. Plant Soil 274:99–123CrossRefGoogle Scholar
  311. Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots. Plant Cell Environ 29:1989–1999PubMedCrossRefGoogle Scholar
  312. Sierra S, Rodelas B, Martínez-Toledo MV, Pozo C, González-López J (1999) Production of B-group vitamins by two Rhizobium strains in chemically defined media. J Appl Microbiol 86:851–858CrossRefGoogle Scholar
  313. Silberbush M, Barber SA (1983) Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic-mathematical model. Plant Soil 74:93–100CrossRefGoogle Scholar
  314. Silverman FP, Assiamah AA, Bush DS (1998) Membrane transport and cytokinin action in root hairs of Medicago sativa. Planta 205:23–31CrossRefGoogle Scholar
  315. Sivaramaiah N, Malik DK, Sindhu SS (2007) Improvement in symbiotic efficiency of chickpea (Cicer arietinum) by coinoculation of Bacillus strains with Mesorhizobium sp. Cicer. Indian J Microbiol 47:51–56CrossRefGoogle Scholar
  316. Smiley RW, Cook R (1983) Relationship between take-all of wheat and rhizosphere pH in soils fertilised with ammonium versus nitrate. Phytopath 63:822–825Google Scholar
  317. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd Edition. Academic Press, Elsevier, AmsterdamGoogle Scholar
  318. Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20PubMedCrossRefGoogle Scholar
  319. Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524CrossRefGoogle Scholar
  320. Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23CrossRefGoogle Scholar
  321. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  322. Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242PubMedCrossRefGoogle Scholar
  323. Ström L, Godbold DL, Owen AG, Jones DL (2001) Organic acid behaviour in a calcareous soil: sorption reactions and biodegradation rates. Soil Biol Biochem 33:2125–2133CrossRefGoogle Scholar
  324. Ström L, Godbold DL, Owen AG, Jones DL (2002) Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol Biochem 34:703–710CrossRefGoogle Scholar
  325. Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems: Challenges and opportunities. Crit Rev Plant Sci 25:303–335CrossRefGoogle Scholar
  326. Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL (2007a) Biological nitrification inhibition (BNI)-Is it a widespread phenomenon? Plant Soil 294:5–18CrossRefGoogle Scholar
  327. Subbarao GV, Tomohiro B, Masahiro K, Osamu I, Samejima H, Wang HY, Pearse SJ, Gopalakrishnan S, Nakahara K, Zakir Hossain AKM, Tsujimoto H, Berry WL (2007b) Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming? Plant Soil 299:55–64CrossRefGoogle Scholar
  328. Subba-Rao NS (1982) Phosphate solubilization by soil microorganisms. In: Subba-Rao NS (ed) Advances in agricultural microbiology. Oxford and IBH Publishing, New Delhi, pp 295–303Google Scholar
  329. Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell. Plant Cell 19:2186–2196 doi:10.1105/tpc.107.052100 PubMedCrossRefGoogle Scholar
  330. Tadano T, Ozawa K, Sakai H, Osaki M, Matsui H (1993) Secretion of acid phosphatase by the roots of crop plants under phosphorus-deficient conditions and some properties of the enzyme secreted by lupin roots. Plant Soil 155/156:95–98 doi:10.1007/BF00024992 CrossRefGoogle Scholar
  331. Tan RX, Zou WX (2001) Endophytes: A rich source of functional metabolites. Nat Prod Rep 18:448–459 doi:10.1039/b100918o PubMedCrossRefGoogle Scholar
  332. Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312 doi:10.1007/BF00262137 CrossRefGoogle Scholar
  333. Tarafdar JC, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3:199–204 doi:10.1007/BF00640630 CrossRefGoogle Scholar
  334. Tarafdar JC, Marschner H (1994) Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plants. Soil Sci Plant Nutr 40:593–600Google Scholar
  335. Tarafdar JC, Marschner H (1995) Dual inoculation with Aspergillus fumigatus and Glomus mosseae enhances biomass production and nutrient uptake in wheat (Triticum aestivum L) supplied with organic phosphorus as Na-phytate. Plant Soil 173:97–102 doi:10.1007/BF00155522 CrossRefGoogle Scholar
  336. Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665 doi:10.1080/01904160600564428 CrossRefGoogle Scholar
  337. Thuler DS, Floh EIS, Handro W, Barbosa HR (2003) Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Lett Appl Microbiol 37:174–178 doi:10.1046/j.1472-765X.2003.01373.x CrossRefGoogle Scholar
  338. Tibbett M, Sanders FE (2002) Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality. Ann Bot (Lond) 89:783–789 doi:10.1093/aob/mcf129 CrossRefGoogle Scholar
  339. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677 doi:10.1038/nature01014 PubMedCrossRefGoogle Scholar
  340. Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852 doi:10.1016/S0038-0717(99)00113-3 CrossRefGoogle Scholar
  341. Tinker PB (1980) The role of rhizosphere microorganisms in mediating phosphorus uptake by plants. In: Kwasenah FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Madison, WI, pp 617–654Google Scholar
  342. Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, New YorkGoogle Scholar
  343. Tobar RM, Azcón R, Barea JM (1994b) Improved nitrogen uptake and transport from 15N-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol 126:119–122 doi:10.1111/j.1469-8137.1994.tb07536.x CrossRefGoogle Scholar
  344. Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304 doi:10.1111/j.1574-6941.2007.00337.x PubMedCrossRefGoogle Scholar
  345. Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412PubMedGoogle Scholar
  346. Uren N (2007) Types, amounts and possible function of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, Florida, pp 1–21Google Scholar
  347. Uroz S, Calvaruso C, Turpaul MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027 doi:10.1128/AEM.00121-07 PubMedCrossRefGoogle Scholar
  348. Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447 doi:10.1094/MPMI-20-4-0441 PubMedCrossRefGoogle Scholar
  349. Vance CP, Ehde-Stone C, Allan DL (2003) Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447 doi:10.1046/j.1469-8137.2003.00695.x CrossRefGoogle Scholar
  350. Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342PubMedGoogle Scholar
  351. Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197 doi:10.1023/A:1022367312851 CrossRefGoogle Scholar
  352. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586 doi:10.1023/A:1026037216893 CrossRefGoogle Scholar
  353. Wakelin S, Anstis S, Warren R, Ryder M (2006) The role of pathogen suppression on the growth promotion of wheat by Penicillium radicum. Aust Plant Pathol 35:253–258 doi:10.1071/AP06008 CrossRefGoogle Scholar
  354. Wakelin SA, Gupta VVSR, Harvey PR, Ryder MH (2007) The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia. Can J Microbiol 53:106–115 doi:10.1139/W06-109 PubMedCrossRefGoogle Scholar
  355. Walley FL, Germida JJ (1997) Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fertil Soils 24:365–371 doi:10.1007/s003740050259 CrossRefGoogle Scholar
  356. Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907 doi:10.1139/cjm-46-10-898 PubMedCrossRefGoogle Scholar
  357. Watt M, Kirkegaard JA, Passioura JB (2006) Rhizosphere biology and crop productivity—a review. Aust J Soil Res 44:299–317 doi:10.1071/SR05142 CrossRefGoogle Scholar
  358. Whitelaw M (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151 doi:10.1016/S0065-2113(08)60948-7 CrossRefGoogle Scholar
  359. Whitelaw MA, Harden TJ, Bender GL (1997) Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Aust J Soil Res 35:291–300 doi:10.1071/S96040 CrossRefGoogle Scholar
  360. Whitelaw MA, Harden TJ, Helayer KR (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665 doi:10.1016/S0038-0717(98)00130-8 CrossRefGoogle Scholar
  361. Wichern F, Eberhardt E, Mayer J, Joergensen RG, Muller T (2008) Nitrogen rhizodeposition in agricultural crops: Methods, estimates and future prospects. Soil Biol Biochem 40:30–48 doi:10.1016/j.soilbio.2007.08.010 CrossRefGoogle Scholar
  362. Wijesinghe DK, John EA, Beurskens S, Hutchings MJ (2001) Root system size and precision in nutrient foraging: Responses to spatial patterns of nutrient supply in six herbaceous species. J Ecol 89:972–983 doi:10.1111/j.1365-2745.2001.00618.x CrossRefGoogle Scholar
  363. Wissuwa M (2003) How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol 133:1947–1958 doi:10.1104/pp.103.029306 PubMedCrossRefGoogle Scholar
  364. Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil doi:10.1007/s11104-008-9693-2
  365. Wouterlood M, Cawthray GR, Turner S, Lambers H, Veneklaas EJ (2004) Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type. Plant Soil 261:1–10 doi:10.1023/B:PLSO.0000035568.28893.f6 CrossRefGoogle Scholar
  366. Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71 doi:10.1007/s002849900012 CrossRefGoogle Scholar
  367. Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125:627–633 doi:10.1104/pp.125.2.627 PubMedCrossRefGoogle Scholar
  368. Yevdokimov IV, Blagodatsky SA (1994) Nitrogen immobilisation and remineralization by microorganisms and nitrogen uptake by plants: interactions and rate calculations. Geomicrobiol J 11:185–193CrossRefGoogle Scholar
  369. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096 doi:10.1104/pp.105.063115 PubMedCrossRefGoogle Scholar
  370. Zapata F (1990) Isotope techniques in soil fertility and plant nutrition studies. In: Hardarson G (ed) Use of nuclear techniques in studies of soil-plant relationships. IAEA, Vienna, pp 61–128Google Scholar
  371. Zhang H, Forde B (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59 doi:10.1093/jexbot/51.342.51 PubMedCrossRefGoogle Scholar
  372. Zimmer W, Wesche M, Timmermans LC (1998) Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: Sequencing and functional analysis of the gene locus. Curr Microbiol 36:327–331 doi:10.1007/s002849900317 PubMedCrossRefGoogle Scholar
  373. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616PubMedGoogle Scholar
  374. Zwart KB, Kuikman PJ, vanVeen JA (1994) Rhizosphere protozoa: Their significance in nutrient dynamics. In: Darbyshire JF (ed) Soil Protozoa. CAB International, Wallingford, pp 91–122Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alan E. Richardson
    • 1
  • José-Miguel Barea
    • 2
  • Ann M. McNeill
    • 3
  • Claire Prigent-Combaret
    • 4
    • 5
    • 6
  1. 1.CSIRO Plant IndustryCanberraAustralia
  2. 2.Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del ZaidínCSICGranadaSpain
  3. 3.University of Adelaide, Soil and Land SystemsAdelaideAustralia
  4. 4.Université de LyonLyonFrance
  5. 5.Université Lyon 1VilleurbanneFrance
  6. 6.CNRS, UMR 5557, Ecologie MicrobienneVilleurbanneFrance

Personalised recommendations